Section 8.4, Improper Integrals: Infinite Integrands

Homework: 8.4 #1-33 odds
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No, we can’t calculate the definite integral this way! Part of the “fine print” in the Second Funda-
mental Theorem of Calculus is that the integrand must be a continuous function on the interval of
integration (here, [—1,2]). However, m% is discontinuous at x = 0.
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Definition of Definite Integrals with Infinite Integrands
Let f be continuous on the interval [a,b) and let lirlr} |f(z)| = co. Then,
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provided that this limit exists and is finite. In this case, we say that the integral converges. Other-
wise, we say that the integral diverges.

An analogous statement holds if | f(z)| — oo at the lower end of the interval.
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The integrand has a vertical asymptote at z = 1, so:
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which is infinite, so this integral diverges.
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The integrand has a vertical asymptote at x = 4, so
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so the integral diverges.
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This means that
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If f is continuous on [a, b] except at a number ¢ such that a < ¢ < b, and suppose that lim |f(z)| = .
Tr—c
Then define
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provided that both integrals on the right converge. Otherwise, we say that ff f(z) dx diverges.
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The integrand has a vertical asymptote at z = 0.
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By the last example, this diverges.
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This integrand has a vertical asymptote at © = —2
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