Section 8.4, Improper Integrals: Infinite Integrands

Homework: 8.4 \#1-33 odds

Consider the definite integral $\int_{-1}^{2} \frac{d x}{x^{3}}$. Can we calculate it as

$$
\int_{-1}^{2} \frac{d x}{x^{3}}=-\left.\frac{1}{2} x^{-2}\right|_{-2} ^{1}=-\frac{1}{2} \cdot 2^{-2}+\frac{1}{2} \cdot 1=\frac{3}{8} ?
$$

No, we can't calculate the definite integral this way! Part of the "fine print" in the Second Fundamental Theorem of Calculus is that the integrand must be a continuous function on the interval of integration (here, $[-1,2]$). However, $\frac{1}{x^{3}}$ is discontinuous at $x=0$.

Definition of Definite Integrals with Infinite Integrands

Let f be continuous on the interval $[a, b)$ and let $\lim _{x \rightarrow b^{-}}|f(x)|=\infty$. Then,

$$
\int_{a}^{b} f(x) d x=\lim _{t \rightarrow b^{-}} \int_{a}^{t} f(x) d x
$$

provided that this limit exists and is finite. In this case, we say that the integral converges. Otherwise, we say that the integral diverges.

An analogous statement holds if $|f(x)| \rightarrow \infty$ at the lower end of the interval.

Examples

1. $\int_{1}^{3} \frac{d x}{(x-1)^{4 / 3}}$

The integrand has a vertical asymptote at $x=1$, so:

$$
\begin{aligned}
\int_{1}^{3} \frac{d x}{(x-1)^{4 / 3}} & =\lim _{t \rightarrow 1^{+}} \int_{t}^{3}(x-1)^{-4 / 3} d x \\
& =\left.\lim _{t \rightarrow 1^{+}}\left(-3(x-1)^{-1 / 3}\right)\right|_{t} ^{3} \\
& =\lim _{t \rightarrow 1^{+}}\left(-3 \cdot 2^{-1 / 3}+3(t-1)^{-1 / 3}\right)
\end{aligned}
$$

which is infinite, so this integral diverges.
2. $\int_{0}^{4} \frac{d x}{\sqrt{4-x}}$

The integrand has a vertical asymptote at $x=4$, so

$$
\begin{aligned}
\int_{0}^{4} \frac{d x}{\sqrt{4-x}} & =\lim _{t \rightarrow 4^{-}} \int_{0}^{t}(4-x)^{-1 / 2} d x \\
& =\left.\lim _{t \rightarrow 4^{-}}\left(-2(4-x)^{1 / 2}\right)\right|_{0} ^{t} \\
& =\lim _{t \rightarrow 4^{-}}\left(-2(t-x)^{1 / 2}+2 \cdot 4^{1 / 2}\right) \\
& =4
\end{aligned}
$$

3. $\int_{0}^{1} x^{-p} d x$ if $p>0$.

If $p=1$,

$$
\begin{aligned}
\int_{0}^{1} x^{-1} d x & =\lim _{t \rightarrow 0^{+}} \int_{t}^{1} x^{-1} d x \\
& =\left.\lim _{t \rightarrow 0^{+}} \ln |x|\right|_{t} ^{1}=\lim _{t \rightarrow 0^{+}}(\ln 1-\ln)=\infty
\end{aligned}
$$

so the integral diverges.
If $p \neq 1$,

$$
\begin{aligned}
\int_{0}^{1} x^{-p} d x & =\lim _{t \rightarrow 0^{+}} \int_{t}^{1} x^{-p} d x \\
& =\left.\lim _{t \rightarrow 0^{+}} \frac{1}{1-p} x^{1-p}\right|_{t} ^{1} \\
& =\lim _{t \rightarrow 0^{+}}\left(\frac{1}{1-p}-\frac{t^{1-p}}{1-p}\right) \\
& = \begin{cases}\frac{1}{1-p} & \text { if } 0<p<1 \\
\infty & \text { if } p>1\end{cases}
\end{aligned}
$$

This means that

$$
\int_{0}^{1} x^{-p} d x= \begin{cases}\frac{1}{1-p} & \text { if } 0<p<1 \\ \infty & \text { if } p \geq 1\end{cases}
$$

If f is continuous on $[a, b]$ except at a number c such that $a<c<b$, and suppose that $\lim _{x \rightarrow c}|f(x)|=\infty$.
Then define

$$
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x
$$

provided that both integrals on the right converge. Otherwise, we say that $\int_{a}^{b} f(x) d x$ diverges.

Examples

1. $\int_{-1}^{2} \frac{d x}{x^{3}}$

The integrand has a vertical asymptote at $x=0$.

$$
\int_{-1}^{2} \frac{d x}{x^{3}}=\int_{-1}^{0} \frac{d x}{x^{3}}+\int_{0}^{2} \frac{d x}{x^{3}}
$$

By the last example, this diverges.
2. $\int_{-3}^{1} \frac{5}{(x+2)^{3 / 5}} d x$

This integrand has a vertical asymptote at $x=-2$

$$
\begin{aligned}
\int_{-3}^{1} \frac{5}{(x+2)^{3 / 5}} d x & =\int_{-3}^{-2} 5(x+2)^{-3 / 5} d x+\int_{-2}^{1} 5(x+2)^{-3 / 5} d x \\
& =\left.\frac{25}{2}(x+2)^{2 / 5}\right|_{-3} ^{-2}+\left.\frac{25}{2}(x+2)^{2 / 5}\right|_{-2} ^{1} \\
& =\frac{25}{2}\left(0-(-1)^{2 / 5}\right)+\frac{25}{2}\left(3^{2 / 5}-0\right) \\
& =\frac{25\left(3^{2 / 5}-1\right)}{2}
\end{aligned}
$$

