Section 8.2, Other Indeterminate Forms

Homework: 8.2 \#1-39 odds

In the last section, we will find limits with the indeterminate form $0 / 0$. In this section, we will look at limits of the form $\infty / \infty, 0 \cdot \infty, \infty-\infty, 0^{0}, \infty^{0}$, and 1^{∞}. It turns out that L'Hôpital's Rule works for all of these, too! For all of these forms except ∞ / ∞, we will need to rearrange the function in the limit first.
In the ∞ / ∞ case, if $\lim _{x \rightarrow c}|f(x)|=\lim _{x \rightarrow c}|g(x)|=\infty$ and if $\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ exists in either the finite or infinite sense, then

$$
\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

where c may represent any real number, c^{-}, c^{+}, or $\pm \infty$.

Examples

Calculate each of the following limits:

1. $\lim _{x \rightarrow \infty} \frac{x^{9}}{e^{x}}$

This has the form ∞ / ∞. Applying L'Hôpital's Rule, we get:

$$
\lim _{x \rightarrow \infty} \frac{x^{9}}{e^{x}}=\lim _{x \rightarrow \infty} \frac{9 x^{8}}{e^{x}}=\cdots=\lim _{x \rightarrow \infty} \frac{9!}{e^{x}}=0
$$

2. $\lim _{x \rightarrow \infty} \frac{(\ln x)^{2}}{2^{x}}$

This also has the form ∞ / ∞, so

$$
\lim _{x \rightarrow \infty} \frac{(\ln x)^{2}}{2^{x}}=\lim _{x \rightarrow \infty} \frac{2(\ln x)}{x 2^{x} \ln 2}=\lim _{x \rightarrow \infty} \frac{2 \cdot \frac{1}{x}}{2^{x} \ln 2+x 2^{x}(\ln 2)^{2}}=0
$$

3. $\lim _{x \rightarrow 0} 5 x \cot x$

This has the form $0 \cdot \infty$. If we rearrange it, we can get a limit with either the form $0 / 0$ or ∞ / ∞, then use L'Hôpital's rule:

$$
\lim _{x \rightarrow 0} 5 x \cot x=\lim _{x \rightarrow 0} \frac{5 x}{\tan x}=\lim _{x \rightarrow 0} \frac{5}{\sec ^{2} x}=5
$$

4. $\lim _{x \rightarrow \pi / 2}(\tan x-\sec x)$

This has the form $\infty-\infty$. We can rewrite this as one term using sines and cosines:

$$
\lim _{x \rightarrow \pi / 2}(\tan x-\sec x)=\lim _{x \rightarrow \pi / 2} \frac{\sin x-1}{\cos x}=\lim _{x \rightarrow \pi / 2} \frac{\cos x}{-\sin x}=0
$$

5. $\lim _{x \rightarrow 0}(\cos x)^{1 / x^{2}}$

This has the form 1^{∞}. Let $y=(\cos x)^{1 / x^{2}}$. Then, $\ln y=\frac{1}{x^{2}} \ln \cos x$ (this will give us the form $\infty \cdot 0)$. Taking the limit for $\ln y$, we get:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\ln \cos x}{x^{2}} & =\lim _{x \rightarrow 0} \frac{-\frac{\sin x}{\cos x}}{2 x}=\lim _{x \rightarrow 0} \frac{-\sin x}{2 x \cos x} \\
& =\lim _{x \rightarrow 0} \frac{-\cos x}{2 \cos x-2 x \sin x}=-\frac{1}{2}
\end{aligned}
$$

Since this is the limit of $\ln y$, not y, we need to exponentiate our answer to see that $\lim _{x \rightarrow 0} y=$ $e^{-1 / 2}$.
6. $\lim _{x \rightarrow 0^{+}} x^{x}$

This has the form 0^{0}, so we will use a similar approach to the last example. Let $y=x^{x}$. Then, $\ln y=x \ln x$, which will give us the form $0 \cdot(-\infty)$. The limit of $\ln y$ is:

$$
\begin{aligned}
& \qquad \lim _{x \rightarrow 0^{+}} x \ln x=\lim _{x \rightarrow 0^{+}} \frac{\ln x}{x^{-1}}=\lim _{x \rightarrow 0^{+}} \frac{x^{-1}}{-x^{-2}}=\lim _{x \rightarrow 0^{+}}-x=0 \\
& \text { so } \lim _{x \rightarrow 0^{+}} x^{x}=\exp \left(\lim _{x \rightarrow 0^{+}} \ln y\right)=e^{0}=1
\end{aligned}
$$

Reminder: Limits with the forms $1^{0}, 0^{\infty}, \infty^{\infty}, \infty \cdot \infty, \infty+\infty, 0 / \infty$ and $\infty / 0$ are not indeterminate. They can all be determined by methods from Calculus I.

