Section 8.1, Indeterminate Forms of the Type 0/0

Homework: 8.1 \#1-23 odds

In this section, we will find limits of the form $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}$ where $\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} g(x)=0$. In some cases, you have been able to find these. For example,

$$
\lim _{x \rightarrow 4} \frac{x^{2}-7 x+12}{x^{2}-16}=\lim _{x \rightarrow 4} \frac{(x-4)(x-3)}{(x-4)(x+4)}=\lim _{x \rightarrow 4} \frac{x-3}{x+4}=\frac{1}{8}
$$

What happens when the numerator and denominator are not polynomials?
To handle this case, we can use L'Hôpital's Rule, which says that if $\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} g(x)=0$ and if $\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ exists (in either the finite or infinite sense), then

$$
\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

There is a proof of this in the book.

Examples

Find each of the following limits. Make sure that you have an indeterminate form of $0 / 0$ before applying L'Hôpital's Rule.

1. $\lim _{x \rightarrow 4} \frac{x^{2}-7 x+12}{x^{2}-16}$

$$
\lim _{x \rightarrow 4} \frac{x^{2}-7 x+12}{x^{2}-16}=\lim _{x \rightarrow 4} \frac{2 x-7}{2 x}=\frac{1}{8}
$$

2. $\lim _{x \rightarrow 0} \frac{\sin x}{x}$

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=\lim _{x \rightarrow 0} \frac{\cos x}{1}=1
$$

3. $\lim _{x \rightarrow 0} \frac{2 x+1-\cos x}{\tan x}$

$$
\lim _{x \rightarrow 0} \frac{2 x+1-\cos x}{\tan x}=\lim _{x \rightarrow 0} \frac{2+\sin x}{\sec ^{2} x}=2
$$

4. $\lim _{x \rightarrow 0} \frac{\sin x}{x^{2}-4 x}$

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x^{2}-4 x}=\lim _{x \rightarrow 0} \frac{\cos x}{2 x-4}=-\frac{1}{4}
$$

5. $\lim _{x \rightarrow-2} \frac{x^{2}-x-6}{x^{2}+4 x+4}$

$$
\lim _{x \rightarrow-2^{+}} \frac{x^{2}-x-6}{x^{2}+4 x+4}=\lim _{x \rightarrow-2^{+}} \frac{2 x-1}{2 x+4}=-\infty
$$

6. $\lim _{x \rightarrow 0} \frac{\sinh x+\tanh x}{e^{x}-1}$

$$
\lim _{x \rightarrow 0} \frac{\sinh x+\tanh x}{e^{x}-1}=\lim _{x \rightarrow 0} \frac{\cosh x+\operatorname{sech}^{2} x}{e^{x}}=2
$$

7. $\lim _{x \rightarrow 0} \frac{e^{x}-\ln (1+x)-1}{x^{2}}$

$$
\lim _{x \rightarrow 0} \frac{e^{x}-\ln (1+x)-1}{x^{2}}=\lim _{x \rightarrow 0} \frac{e^{x}-\frac{1}{1+x}}{2 x}=\lim _{x \rightarrow 0} \frac{(1+x) e^{x}-1}{2 x+2 x^{2}}=\lim _{x \rightarrow 0} \frac{e^{x}+(1+x) e^{x}}{2+4 x}=\frac{2}{2}=1
$$

