Section 7.2, Integration by Parts

Homework: 7.2 #1-57 odd

So far, we have been able to integrate some products, such as $\int xe^{x^2} dx$. They have been able to be solved by a *u*-substitution. However, what happens if we can't solve it by a *u*-substitution? For example, consider $\int xe^x dx$. For this, we will need a technique called **integration by parts**.

From the product rule for derivatives, we know that $D_x[u(x)v(x)] = u'(x)v(x) + u(x)v'(x)$. Rearranging this and integrating, we see that:

$$u(x)v'(x) = D_x[u(x)v(x)] - u'(x)v(x)$$
$$\int u(x)v'(x) dx = \int D_x[u(x)v(x)] dx - \int u'(x)v(x) dx$$

This gives us the formula needed for integration by parts:

$$\int u(x)v'(x) \, dx = u(x)v(x) - \int u'(x)v(x) \, dx, \quad \text{or, we can write it as}$$
$$\int u \, dv = uv - \int v \, du$$

In this section, we will practice choosing u and v properly.

Examples

Perform each of the following integrations:

1. $\int xe^x dx$ Let u = x, and $dv = e^x dx$. Then, du = dx and $v = e^x$. Using our formula, we get that

$$\int xe^x \, dx = xe^x - \int e^x \, dx = xe^x - e^x + C$$

2. $\int \frac{\ln x}{\sqrt{x}} dx$

Since we do not know how to integrate $\ln x$, let $u = \ln x$ and $dv = x^{-1/2}$. Then du = 1/x and $v = 2x^{1/2}$, so

$$\int \frac{\ln x}{\sqrt{x}} \, dx = 2x^{1/2} \ln x - \int 2x^{-1/2} \, dx$$
$$= 2x^{1/2} \ln x - 4x^{1/2} + C$$

3. $\int \arctan x \, dx$

We aren't given a (obvious) product here, but we don't have an integration formula for x and x. So, we can think of the integral as $\int 1 \cdot \arctan x \, dx$, and let $u = \arctan x$ and $dv = 1 \, dx$. Then, $du = \frac{dx}{1+x^2}$ and v = x. Using the formula,

$$\int \arctan x \, dx = x \arctan x - \int \frac{x}{1+x^2} \, dx$$
$$= x \arctan x - \frac{1}{2} \ln(1+x^2) + C$$

A similar technique can be used to integrate other inverse trigonometric functions, as well as the natural logarithm function. 4. $\int x^2 \sin(2x) dx$

Let $u = x^2$ and $dv = \sin(2x) dx$. Then, du = 2x dx and $v = -\frac{\cos(2x)}{2}$. Using our formula,

$$\int x^2 \sin(2x) \, dx = -\frac{x^2}{2} \cos(2x) + \int x \cos(2x) \, dx$$

Since we do not know the integral of $x \cos(2x)$, we will repeat integration by parts with u = x and $dv = \cos(2x) dx$. Then, du = dx and $v = \frac{\sin(2x)}{2}$. We then get

$$\int x \cos(2x) \, dx = \frac{x}{2} \sin(2x) - \int \frac{\sin(2x)}{2} \, dx$$
$$= \frac{x}{2} \sin(2x) + \frac{\cos(2x)}{4} + C$$

As a result, our final answer is

$$\int x^2 \sin(2x) \, dx = -\frac{x^2}{2} \cos(2x) + \frac{x}{2} \sin(2x) + \frac{\cos(2x)}{4} + C$$

5. $\int e^x \cos x \, dx$

Let $u = e^x$ and $dv = \cos x \, dx$. Then, $du = e^x \, dx$ and $v = \sin x$, so

$$\int e^x \cos x \, dx = e^x \sin x - \int e^x \sin x \, dx$$

We will repeat integration by parts with $u = e^x$ and $dv = \sin x \, dx$, so $du = e^x \, dx$ and $v = -\cos x$. From our formula, we see:

$$\int e^x \cos x \, dx = e^x \sin x - \int e^x \sin x \, dx$$
$$= e^x \sin x + e^x \cos x - \int e^x \cos x \, dx.$$
 Solving for the integral, we get
$$2 \int e^x \cos x \, dx = e^x \sin x + e^x \cos x$$
$$\int e^x \cos x \, dx = \frac{1}{2} e^x \sin x + \frac{1}{2} e^x \cos x + C$$

- 6. Derive a reduction formula for $\int \cos^n x \, dx$ when $n \ge 2$.
 - Let $u = \cos^{n-1} x$ and $dv = \cos^n x \, dx$. Then, $du = -(n-1)\cos^{n-2} x \sin x \, dx$ and $v = \sin x$. By our formula,

$$\int \cos^n x \, dx = \sin x \cos^{n-1} x + \int (n-1) \cos^{n-2} x \sin^2 x \, dx$$
$$= \sin x \cos^{n-1} x + \int (n-1) \cos^{n-2} x (1-\cos^2 x) \, dx$$
$$= \sin x \cos^{n-1} x + (n-1) \int \cos^{n-2} x \, dx - (n-1) \int \cos^n x \, dx.$$
Solving for original integral, we get that

$$n \int \cos^{n} x \, dx = \sin x \cos^{n-1} x + (n-1) \int \cos^{n-2} x \, dx$$
$$\int \cos^{n} x \, dx = \frac{1}{n} \sin x \cos^{n-1} x + \frac{n-1}{n} \int \cos^{n-2} x \, dx$$