
Section 7.2, Integration by Parts

Homework: 7.2 #1–57 odd

So far, we have been able to integrate some products, such as
∫
xex

2

dx. They have been able to
be solved by a u-substitution. However, what happens if we can’t solve it by a u-substitution? For
example, consider

∫
xex dx. For this, we will need a technique called integration by parts.

From the product rule for derivatives, we know that Dx[u(x)v(x)] = u′(x)v(x) + u(x)v′(x). Rear-
ranging this and integrating, we see that:

u(x)v′(x) = Dx[u(x)v(x)]− u′(x)v(x)∫
u(x)v′(x) dx =

∫
Dx[u(x)v(x)] dx−

∫
u′(x)v(x) dx

This gives us the formula needed for integration by parts:∫
u(x)v′(x) dx = u(x)v(x)−

∫
u′(x)v(x) dx, or, we can write it as∫

u dv = uv −
∫

v du

In this section, we will practice choosing u and v properly.

Examples
Perform each of the following integrations:

1.
∫
xex dx

Let u = x, and dv = ex dx. Then, du = dx and v = ex. Using our formula, we get that∫
xex dx = xex −

∫
ex dx = xex − ex + C

2.
∫

ln x√
x
dx

Since we do not know how to integrate lnx, let u = lnx and dv = x−1/2. Then du = 1/x and
v = 2x1/2, so∫

lnx√
x
dx = 2x1/2 lnx−

∫
2x−1/2 dx

= 2x1/2 lnx− 4x1/2 + C

3.
∫

arctanx dx
We aren’t given a (obvious) product here, but we don’t have an integration formula for arctanx.
So, we can think of the integral as

∫
1 · arctanx dx, and let u = arctanx and dv = 1 dx. Then,

du = dx
1+x2 and v = x. Using the formula,∫

arctanx dx = x arctanx−
∫

x

1 + x2
dx

= x arctanx− 1

2
ln(1 + x2) + C

A similar technique can be used to integrate other inverse trigonometric functions, as well as
the natural logarithm function.
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4.
∫
x2 sin(2x) dx

Let u = x2 and dv = sin(2x) dx. Then, du = 2x dx and v = − cos(2x)
2 . Using our formula,∫

x2 sin(2x) dx = −x2

2
cos(2x) +

∫
x cos(2x) dx

Since we do not know the integral of x cos(2x), we will repeat integration by parts with u = x

and dv = cos(2x) dx. Then, du = dx and v = sin(2x)
2 . We then get∫

x cos(2x) dx =
x

2
sin(2x)−

∫
sin(2x)

2
dx

=
x

2
sin(2x) +

cos(2x)

4
+ C

As a result, our final answer is∫
x2 sin(2x) dx = −x2

2
cos(2x) +

x

2
sin(2x) +

cos(2x)

4
+ C

5.
∫
ex cosx dx

Let u = ex and dv = cosx dx. Then, du = ex dx and v = sinx, so∫
ex cosx dx = ex sinx−

∫
ex sinx dx

We will repeat integration by parts with u = ex and dv = sinx dx, so du = ex dx and
v = − cosx. From our formula, we see:∫

ex cosx dx = ex sinx−
∫

ex sinx dx

= ex sinx + ex cosx−
∫

ex cosx dx. Solving for the integral, we get

2

∫
ex cosx dx = ex sinx + ex cosx∫
ex cosx dx =

1

2
ex sinx +

1

2
ex cosx + C

6. Derive a reduction formula for
∫

cosn x dx when n ≥ 2.
Let u = cosn−1 x and dv = cosx dx. Then, du = −(n− 1) cosn−2 x sinx dx and v = sinx. By
our formula,∫

cosn x dx = sinx cosn−1 x +

∫
(n− 1) cosn−2 x sin2 x dx

= sinx cosn−1 x +

∫
(n− 1) cosn−2 x(1− cos2 x) dx

= sinx cosn−1 x + (n− 1)

∫
cosn−2 x dx− (n− 1)

∫
cosn x dx.

Solving for original integral, we get that

n

∫
cosn x dx = sinx cosn−1 x + (n− 1)

∫
cosn−2 x dx∫

cosn x dx =
1

n
sinx cosn−1 x +

n− 1

n

∫
cosn−2 x dx
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