Section 6.9, The Hyperbolic Functions and Their Inverses

Homework: 6.9 \#1-51 odds

In this section, we will define the six hyperbolic functions, which are combinations of e^{x} and e^{-x}.

1 Hyperbolic Functions

Hyperbolic sine, hyperbolic cosine, hyperbolic tangent, and their reciprocals are:

$$
\begin{aligned}
\sinh x & =\frac{e^{x}-e^{-x}}{2} \\
\cosh x & =\frac{e^{x}+e^{-x}}{2} \\
\tanh x & =\frac{\sinh x}{\cosh x} \\
\operatorname{csch} x & =\frac{1}{\sinh x} \\
\operatorname{sech} x & =\frac{1}{\cosh x} \\
\operatorname{coth} x & =\frac{1}{\tanh x}=\frac{\cosh x}{\sinh x}
\end{aligned}
$$

sinh and cosh satisfy the identity

$$
\cosh ^{2} x-\sinh ^{2} x=1
$$

We can see this by writing it out:

$$
\cosh ^{2} x-\sinh ^{2} x=\frac{e^{2 x}+2+e^{-2 x}}{2}-\frac{e^{2 x}-2+e^{-2 x}}{2}=1
$$

Note that \sinh is an odd function since $\sinh (-x)=-\sinh x$ and cosh is an even function since $\cosh (-x)=\cosh x$.

The graphs of four of these functions are shown in Figure 3 on page 375 of the book (also sketched on the board in class).

Example

Verify that $\tanh (x-y)=\frac{\tanh x-\tanh y}{1-\tanh x \tanh y} .(\# 10)$
Note that:

$$
\begin{aligned}
\frac{\tanh x-\tanh y}{1-\tanh x \tanh y} & =\frac{\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}-\frac{e^{y}-e^{-y}}{e^{y}+e^{-y}}}{1-\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} \cdot \frac{e^{y}-e^{-y}}{e^{y}+e^{-y}}} \cdot \frac{\left(e^{x}+e^{-x}\right)\left(e^{y}+e^{-y}\right)}{\left(e^{x}+e^{-x}\right)\left(e^{y}+e^{-y}\right)} \\
& =\frac{\left(e^{x}-e^{-x}\right)\left(e^{y}+e^{-y}\right)-\left(e^{y}-e^{-y}\right)\left(e^{x}+e^{-x}\right)}{\left(e^{x}+e^{-x}\right)\left(e^{y}+e^{-y}\right)-\left(e^{x}-e^{-x}\right)\left(e^{y}-e^{-y}\right)} \\
& =\frac{e^{x+y}+e^{x-y}-e^{y-x}-e^{-x-y}-e^{x+y}-e^{y-x}+e^{x-y}+e^{-x-y}}{e^{x+y}+e^{x-y}+e^{y-x}+e^{-x-y}-e^{x+y}+e^{x-y}+e^{y-x}-e^{-x-y}} \\
& =\frac{2 e^{x-y}-2 e^{y-x}}{2 e^{x-y}+2 e^{y-x}} \\
& =\frac{e^{x-y}-e^{y-x}}{e^{x-y}-e^{y-x}} \\
& =\tanh (x-y)
\end{aligned}
$$

(To show identities, it is normally easier to start with the more complicated side and simplify it.)

2 Derivatives

The derivatives of sinh and cosh can be computed as:

$$
\begin{aligned}
& D_{x} \sinh x=D_{x}\left[\frac{e^{x}-e^{-x}}{2}\right]=\frac{e^{x}+e^{-x}}{2}=\cosh x \\
& D_{x} \cosh x=D_{x}\left[\frac{e^{x}+e^{-x}}{2}\right]=\frac{e^{x}-e^{-x}}{2}=\sinh x
\end{aligned}
$$

The other derivatives can be calculated using the quotient rule:

$$
\begin{aligned}
& D_{x} \sinh x=\cosh x \\
& D_{x} \cosh x=\sinh x \\
& D_{x} \tanh x=\operatorname{sech}{ }^{2} x \\
& D_{x} \operatorname{csch} x=-\operatorname{csch} x \operatorname{coth} x \\
& D_{x} \operatorname{sech} x=-\operatorname{sech} \tanh x \\
& D_{x} \operatorname{coth} x=-\operatorname{csch}^{2} x
\end{aligned}
$$

Note that these are similar to the derivatives of trigonometric functions (with the exception of a few negative signs).

Examples

1. Calculate $D_{x}\left[\cosh ^{3}(\sin x)\right]$.

$$
D_{x}\left[\cosh ^{3}(\sin x)\right]=3 \cosh ^{2}(\sin x) \cdot \sinh (\sin x) \cdot \cos x
$$

2. Calculate $\int \cosh (3 x+1) d x$.

$$
\int \cosh (3 x+1) d x=\frac{1}{3} \sinh (3 x+1)+C
$$

3. Calculate $\int \tanh x d x$.

$$
\int \tanh x d x=\int \frac{\sinh x}{\cosh x} d x=\ln |\cosh x|+C=\ln (\cosh x)+C
$$

3 Inverse Hyperbolic Functions

All of the hyperbolic functions have inverses for an appropriate domain (for cosh and sech, we restrict the domain to $x \geq 0$. The rest hold for all real numbers.). The four we will use most often are:

$$
\begin{aligned}
\sinh ^{-1} x & =\ln \left(x+\sqrt{x^{2}+1}\right) \\
\cosh ^{-1} x & =\ln \left(x+\sqrt{x^{2}-1}\right) \quad x \geq 1 \\
\tanh ^{-1} x & =\frac{1}{2} \ln \frac{1+x}{1-x}, \quad-1<x<1 \\
\operatorname{sech}^{-1} x & =\ln \left(\frac{1+\sqrt{1-x^{2}}}{x}\right), \quad 0<x \leq 1
\end{aligned}
$$

Proof of the $\sinh ^{-1}$ formula: Using the procedure for finding inverse functions, set $y=\frac{e^{x}-e^{-x}}{2}$. Solving for x, we get:

$$
\begin{aligned}
2 y & =e^{x}-e^{-x} \\
0 & =e^{x}-2 y-e^{-x} \\
0 & =e^{-x}\left(e^{2 x}-2 y e^{x}-1\right)=e^{-x}\left(\left(e^{x}\right)^{2}-2 y e^{x}-1\right)
\end{aligned}
$$

e^{-x} never equals zero, but we can use the quadratic formula to solve for e^{x} in the second factor.

$$
e^{x}=\frac{2 y \pm \sqrt{(2 y)^{2}-4 \cdot 1 \cdot(-1)}}{2}=\frac{2 y \pm \sqrt{4 y^{2}+4}}{2}
$$

Since e^{x} cannot be negative, we can ignore the "-" answer.
$=y+\sqrt{y^{2}+1}$. Solving for x, we get:
$x=\ln \left(y+\sqrt{y^{2}+1}\right)$
So, $\sinh ^{-1} x=\ln \left(x+\sqrt{x^{2}+1}\right)$.
The book shows the proof of the formula for $\cosh ^{-1}$.
We can use the formulas to get the derivatives for the inverse hyperbolic functions:

$$
\begin{aligned}
D_{x} \sinh ^{-1} x & =\frac{1}{\sqrt{x^{2}+1}} \\
D_{x} \cosh ^{-1} x & =\frac{1}{\sqrt{x^{2}-1}} \quad x>1 \\
D_{x} \tanh ^{-1} x & =\frac{1}{1-x^{2}}, \quad-1<x<1 \\
D_{x} \operatorname{sech}^{-1} x & =\frac{-1}{x \sqrt{1-x^{2}}}, \quad 0<x<1
\end{aligned}
$$

Proof of the formula for $D_{x} \sinh ^{-1} x$:

$$
\begin{aligned}
D_{x} \sinh ^{-1} x & =\frac{1}{x+\sqrt{x^{2}+1}} \cdot\left(1+\frac{2 x}{2 \sqrt{x^{2}+1}}\right) \\
& =\frac{1}{x+\sqrt{x^{2}+1}} \cdot \frac{\sqrt{x^{2}+1}+x}{\sqrt{x^{2}+1}} \\
& =\frac{1}{\sqrt{x^{2}+1}}
\end{aligned}
$$

Example

Calculate y^{\prime} if $y=x^{3} \sinh ^{-1}\left(x^{6}\right)$.

$$
y^{\prime}=x^{3} \cdot \frac{6 x^{5}}{\sqrt{x^{12}+1}}+3 x^{2} \sinh ^{-1}\left(x^{6}\right)=\frac{6 x^{8}}{\sqrt{x^{12}+1}}+3 x^{2} \sinh ^{-1}\left(x^{6}\right)
$$

