Section 6.9, The Hyperbolic Functions and Their Inverses

Homework: 6.9 #1-51 odds

In this section, we will define the six hyperbolic functions, which are combinations of e* and e™*.

1 Hyperbolic Functions

Hyperbolic sine, hyperbolic cosine, hyperbolic tangent, and their reciprocals are:
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sinh and cosh satisfy the identity
cosh? z — sinh? z = 1.
We can see this by writing it out:
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cosh? x — sinh? x = — =1.
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Note that sinh is an odd function since sinh(—z) = —sinhz and cosh is an even function since
cosh(—xz) = cosh z.

The graphs of four of these functions are shown in Figure 3 on page 375 of the book (also sketched
on the board in class).
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(To show identities, it is normally easier to start with the more complicated side and simplify it.)



2 Derivatives

The derivatives of sinh and cosh can be computed as:
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The other derivatives can be calculated using the quotient rule:

D, sinh x = cosh x
D, coshx = sinhx

D, tanh x = sech 2y

D, csch x = —csch x cothx
D, sech x = —sech tanhx
D, cothz = —csch %z

Note that these are similar to the derivatives of trigonometric functions (with the exception of a few

negative signs).
Examples

1. Calculate D, [cosh®(sin z)].

D, [cosh®(sin )] = 3 cosh?(sin z) - sinh(sin z) - cos =

2. Calculate [ cosh(3z + 1) da.

1
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3. Calculate [tanhzdz.

3 h
/tanh.rd.r:/sm Ida::ln|coshm|+C’:ln(coshx)—|—0
cosh x

3 Inverse Hyperbolic Functions

All of the hyperbolic functions have inverses for an appropriate domain (for cosh and sech , we
restrict the domain to & > 0. The rest hold for all real numbers.). The four we will use most often

are:
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Proof of the sinh~' formula: Using the procedure for finding inverse functions, set y = 5

Solving for z, we get:
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e~ never equals zero, but we can use the quadratic formula to solve for e in the second factor.
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Since e® cannot be negative, we can ignore the

=1y + v/y? + 1. Solving for x, we get:
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answer.

So, sinh ™' 2 =1In <x +Var? + 1).

The book shows the proof of the formula for cosh™!.

We can use the formulas to get the derivatives for the inverse hyperbolic functions:
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Example
Calculate y' if y = 23 sinh™*(2%).
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