Section 6.4, General Exponential and Logarithmic Functions

Homework: 6.4 \#1-43 odds

Let $a \in \mathbb{R}$ such that $a>0$ (and $a \neq 1$). Let $a^{x}=\exp (x \ln a)$ (Note that this implies that $\ln a^{x}=x \ln a$.). This is called the exponential function with base a.

Theorem A: Properties of Exponents

1. $a^{x} a^{y}=a^{x+y}$
2. $\frac{a^{x}}{a^{y}}=a^{x-y}$
3. $\left(a^{x}\right)^{y}=a^{x y}$
4. $(a b)^{x}=a^{x} b^{x}$
5. $\left(\frac{a}{b}\right)^{x}=\frac{a^{x}}{b^{x}}$

Proof of (4):

$$
\begin{aligned}
(a b)^{x} & =\exp (x \ln (a b)) \text { by the definition of the exponential function with base } a b \\
& =\exp (x(\ln a+\ln b)) \\
& =\exp (x \ln a+x \ln b) \\
& =\exp (x \ln a) \exp (x \ln b)=a^{x} b^{x}
\end{aligned}
$$

The proofs of the other statements are similar (and a few are in the book).
The logarithm function with base $a, \log _{a} x$, is the inverse of the exponential function with base a. In other words, $\log _{a} a^{x}=x$ and $a^{\log _{a} x}=x$. It can also be defined as $y=\log _{a} x \Leftrightarrow x=a^{y}$.
The change of base formula says that

$$
\log _{a} x=\frac{\ln x}{\ln a}
$$

To see this, let $y=\log _{a} x$, so $x=a^{y}$. Taking the natural logarithm of both sides and solving for y, we get the above formula.

1 Derivatives and Integrals

Let a be a positive real number. Then,

$$
\begin{aligned}
& D_{x} a^{x}=a^{x} \ln a \\
& \int a^{x} d x=\frac{a^{x}}{\ln a}+C, \quad a \neq 1 \\
& D_{x} \log _{a} x=\frac{1}{x \ln a}, \quad a \neq 1
\end{aligned}
$$

Be careful to not confuse the exponential formulas with the power rule.
We now have another way to show that the power rule holds for all real numbers a :

$$
D_{x}\left(x^{a}\right)=D_{x}\left(e^{a \ln x}\right)=e^{a \ln x} \cdot \frac{a}{x}=x^{a} \cdot \frac{a}{x}=a x^{a-1}
$$

Examples

1. Find y^{\prime} if $y=2^{\sin x}$.

$$
y^{\prime}=2^{\sin x}(\ln 2)(\cos x)
$$

Note: Be careful with the formatting of your answer, since $(\ln 2)(\cos x) \neq \ln (2 \cos x)$.
2. Calculate $D_{x}\left(\log _{5}\left(4 x^{2}-3\right)\right)$.

$$
D_{x}\left(\log _{5}\left(4 x^{2}-3\right)\right)=\frac{8 x}{\left(4 x^{2}-3\right) \ln 5}
$$

3. Calculate $\int \frac{3^{\sqrt{x}}}{\sqrt{x}} d x$.

Letting $u=\sqrt{x}=x^{1 / 2}, d u=x^{-1 / 2} / 2$, so

$$
\int \frac{3^{\sqrt{x}}}{\sqrt{x}} d x=2 \int 3^{u} d u=\frac{2 \cdot 3^{u}}{\ln 3}+C=\frac{2 \cdot 3^{\sqrt{x}}}{\ln 3}+C
$$

For some functions, it is easier to first take the logarithm of both sides, then use implicit differentiation to calculate the derivative. This process is called logarithmic differentiation.

Example

Let $y=x^{x}$. Calculate y^{\prime}.
We do not have derivative formulas for a variable raised to a variable power, so we need to manipulate the function. Taking the \ln of both sides of the function, we get that:

$$
\begin{aligned}
\ln y & =\ln x^{x}=x \ln x \\
\frac{y^{\prime}}{y} & =\ln x+\frac{x}{x}=\ln x+1 \\
y^{\prime} & =(\ln x+1) y=(\ln x+1) x^{x}
\end{aligned}
$$

Note about the homework: Some of the problems involve solving logarithmic equations, which will properties of logarithms as well as manipulating expressions of the form $y=\log _{a} x$ to $x=a^{y}$.

