Section 6.2, Inverse Functions and Their Derivatives

Homework: 6.2 \#1-41 odds

Our goal for this section is to find a function that "undoes" a given function f by recovering the x-value that gave the y-value of the function. We will also look at some properties that it satisfies.
The function that "undoes" $f(x)$ is called the inverse of $f(x)$ and is denoted $f^{-1}(x)$. These functions satisfy $\left(f \circ f^{-1}\right)(x)=x$ and $\left(f^{-1} \circ f\right)(x)=x$ (Note: the domains may not be the same).

1 When does f^{-1} exist?

There are many criteria that can be checked to see if an inverse function exists. Some of them are:

- One-to-one: A function is called one-to-one if $f\left(x_{1}\right)=f\left(x_{2}\right)$ implies that $x_{1}=x_{2}$. This implies that every y-value of the function comes from a unique value of x. This condition is equivalent to the geometric condition that every horizontal line meets the graph of $y=f(x)$ in at most one point.

This condition can be difficult to check, since you need to know that the entire graph looks like.

- Strict monotonicity: A function that is either increasing or decreasing on its domain is called strictly monotonic. If a function is strictly monotonic on its domain, it has an inverse function (by Theorem A).

This condition is normally easier to check than the one-to-one condition, since we can find $f^{\prime}(x)$ and check that either $f^{\prime}(x)>0$ for every value of x, or $f^{\prime}(x)<0$ for every value of x.

Examples

1. Show that $f(x)=x^{7}+4 x-5$ has an inverse.

We know that $f^{\prime}(x)=7 x^{6}+4>0$, so the function is strictly increasing, which means that it has an inverse.
2. Does $f(x)=x^{2}-9$ have an inverse function? If not, can we restrict the domain so that it does?
Since the graph of $y=f(x)$ is a parabola, we know that it is not one-to-one. Therefore, it does not have an inverse. However, if we consider just $x \geq 0$ or $x \leq 0$, it will have an inverse.

2 Finding inverse functions

Since we want to find a function that "undoes" $f(x)$, we can use that $x=f^{-1}(y)$ if and only if $y=f(x)$.

Steps for finding a formula for an inverse function:

1. Solve $y=f(x)$ for x in terms of y.
2. Switch the x and y variables.
3. Set $f^{-1}(x)=y$.
(Note: Using y instead of $f(x)$ in the first step is only used to make the notation easier when solving the equation.)

Example

Let $f(x)=\frac{3 x-4}{x+1}$. Find $f^{-1}(x)$.
First, let $y=\frac{3 x-4}{x+1}$. Solving for x, we get:

$$
\begin{aligned}
y(x+1) & =3 x-4 \\
y x+y & =3 x-4 \\
y x-3 x & =-y-4 \\
x(y-3) & =-y-4 \\
x & =\frac{-y-4}{y-3},
\end{aligned}
$$

Therefore, $f^{-1}(x)=\frac{-x-4}{x-3}$. We can check our answer by verifying that $\left(f^{-1} \circ f\right)(x)=x$ and $\left(f \circ f^{-1}\right)(y)=y$.
If we want to graph $y=f^{-1}(x)$ and have information about the graph of $y=f(x)$, we can graph $y=f^{-1}(x)$ fairly easily. To do this, note that if (x, y) is a point on the graph of $y=f(x)$, then (y, x) is a point on the graph of $f^{-1}(x)$. This means that we can reflect the graph of $y=f(x)$ about the line $y=x$ and get the graph of $y=f^{-1}(x)$. (Also, the domain of $f(x)$ is the range of $f^{-1}(x)$ and the range of $f(x)$ is the domain of $f^{-1}(x)$.)

3 How do the derivatives compare?

If we know $f^{\prime}(x)$, we want to be able to easily compute $\left(f^{-1}\right)^{\prime}(y)$ for $y=f(x)$.
Theorem B (the Inverse Function Theorem) says that if f is differentiable and strictly monotonic on an interval I, then f^{-1} is differentiable at the corresponding point $y=f(x)$ and

$$
\left(f^{-1}\right)^{\prime}(y)=\frac{1}{f^{\prime}(x)}
$$

This can also be written

$$
\frac{d x}{d y}=\frac{1}{d y / d x}
$$

Example

Let $y=f(x)=x^{7}+4 x-5$. Find $\left(f^{-1}\right)^{\prime}(-5)$.
Note that $y=-5$ corresponds to $x=0$. Also, $f^{\prime}(x)=7 x^{6}+4$, so $\left(f^{-1}\right)^{\prime}(-5)=\frac{1}{f^{\prime}(0)}=\frac{1}{4}$.

