Section 6.1, The Natural Logarithm Function

Homework: 6.1 \#1-43 odds

The natural logarithm function, denoted by \ln, is defined by

$$
\ln x=\int_{1}^{x} \frac{1}{t} d t, \quad x>0
$$

As a result,

$$
D_{x}(\ln x)=\frac{1}{x}
$$

Examples

Calculate $\frac{d y}{d x}$ for each of the following:

1. $y=\ln (3 x)$

$$
\frac{d y}{d x}=\frac{3}{3 x}=\frac{1}{x}
$$

2. $y=x \ln \left(x^{2}\right)$

$$
\frac{d y}{d x}=\ln \left(x^{2}\right)+x \cdot \frac{2 x}{x^{2}}=\ln \left(x^{2}\right)+2
$$

3. $y=\ln \left(2 \sqrt{5 x^{3}}\right)$

We can rewrite $y=\ln \left(2\left(5 x^{3}\right)^{1 / 2}\right)=\ln \left(2 \cdot 5^{1 / 2} x^{3 / 2}\right)$

$$
\frac{d y}{d x}=\frac{2 \cdot 5^{1 / 2} \cdot \frac{3}{2} \cdot x^{1 / 2}}{2 \cdot 5^{1 / 2} x^{3 / 2}}=\frac{3}{2 x}
$$

Properties of Logarithms

1. $\ln 1=0$
2. $\ln a b=\ln a+\ln b$
3. $\ln \frac{a}{b}=\ln a-\ln b$
4. $\ln a^{r}=r \ln a$

Proof:

(1): By the definition of the natural logarithm function, $\ln 1=\int_{1}^{1} \frac{1}{t} d t=0$.
(2): Let a be a constant, and consider $f(x)=\ln (a x)$. Then, $f^{\prime}(x)=\frac{a}{a x}=1 / x$. Since this function has the same derivative as $\ln x$, we know that $f(x)=\ln x+C$ for all $x>0$. Using $x=1$ and statement (1), we see that $\ln a=\ln 1+C=C$, so $f(x)=\ln (a x)=\ln a+\ln x$.
(3): First, note that $0=\ln 1=\ln \left(b \cdot \frac{1}{b}\right)=\ln b+\ln \frac{1}{b}$, where the last equality is by statement (2). Rearranging this, we see that $\ln \frac{1}{b}=-\ln b$. Then, $\ln \frac{a}{b}=\ln \left(a \cdot \frac{1}{b}\right)=\ln a+\ln \frac{1}{b}=\ln a-\ln b$.
(4): Let $f(x)=\ln \left(x^{r}\right)$ for a constant r. Then, $f^{\prime}(x)=\frac{r x^{r-1}}{x^{r}}=\frac{r}{x}$. This has the same derivative as $r \ln x$, so $f(x)=r \ln x+C$. Using $x=1$, we see that $C=0$, so $f(x)=\ln \left(x^{r}\right)=r \ln x$.

Examples

1. Write the following as a single logarithm:

$$
\begin{aligned}
& \ln x+2 \ln (x+1)-\ln (x+2) \\
& \ln x+2 \ln (x+1)-\ln (x+2)=\ln x+\ln (x+1)^{2}-\ln (x+2)=\ln \frac{x(x+1)^{2}}{x+2}
\end{aligned}
$$

2. Find $d y / d x$ by logarithmic differentiation if $y=\left(x^{2}+1\right)^{3}(x-2) /(x+1)$.

Taking the natural logarithm of both sides, we see that $\ln y=3 \ln \left(x^{2}+1\right)+\ln (x-2)-\ln (x+1)$.
Taking the derivative of both sides with respect to x, we get that

$$
\begin{aligned}
\frac{d y / d x}{y} & =3 \frac{2 x}{x^{2}+1}+\frac{1}{x-2}-\frac{1}{x+1}, \text { so } \\
\frac{d y}{d x} & =\left(\frac{6 x}{x^{2}+1}+\frac{1}{x-2}-\frac{1}{x+1}\right) \cdot y \\
& =\left(\frac{6 x}{x^{2}+1}+\frac{1}{x-2}-\frac{1}{x+1}\right) \cdot \frac{\left(x^{2}+1\right)^{3}(x-2)}{x+1}
\end{aligned}
$$

Integration

$$
\int \frac{1}{u} d u=\ln |u|+C, \quad u \neq 0
$$

Note that this fills in the "gap" in the power rule for integration ($\int x^{n} d x=\frac{x^{n+1}}{n+1}$ for $n \neq-1$).

Examples

Calculate each of the following integrals:

1. $\int \frac{x}{x^{2}-3} d x$

$$
\int \frac{x}{x^{2}-3} d x=\frac{1}{2} \ln \left|x^{2}-3\right|+C
$$

2. $\int(3 x-4)^{-1} d x$

$$
\int(3 x-4)^{-1} d x=\frac{1}{3} \ln |3 x-4|+C
$$

3. $\int \tan x d x$

$$
\int \tan x d x=\int \frac{\sin x}{\cos x} d x=-\ln |\cos x|+C
$$

4. $\int[\ln (\sin x)+\ln (\csc x)] d x$

$$
\int[\ln (\sin x)+\ln (\csc x)] d x=\int[\ln (\sin x)-\ln (\sin x)] d x=\int 0 d x=C
$$

