Section 10.7, Calculus in Polar Coordinates

Homework: 10.7 #1-29 odds

1 Area

For a circle of radius r, note that the area of a sector (“wedge”) of angle 6 is
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Using this, we see that if r = f(6), the area of the sector created by a curve from § = « to § = 3 is
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Examples
1. Find the area inside the curve » = 3 + 3sin 6.

We need to consider angles from 0 to 27:
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2. Find the area inside r = 3sin 6 and outside r = 1 + sin 6.

After quickly graphing these, we can find the angles 6 at which the graphs intersect:
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Therefore, to find the area, we can set up the difference of two integrals:
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2 Slope of the Tangent Line

In rectangular coordinates, we know that m = %. In Polar Coordinates,
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Examples

1. Find the slope of the line tangent to r = 2 — 3sin at § = 7/6.
Note that f(f) = 2 — 3sin@. First, let’s calculate the formula for slope in polar coordinates:
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2. For r = 2 — 3sinf, when is the line tangent to the graph horizontal?

Note that we calculated a formula for the slope of the line tangent to this curve in the last
example. This means that we want to find where the formula equals zero.
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