Section 10.6, Graphs of Polar Equations

Homework: 10.6 \#1-37 odds

1 Symmetry in Graphing with Polar Coordinates

Symmetry is a helpful tool when graphing in Polar Coordinates.

- If replacing (r, θ) by $(r,-\theta)$ gives an equivalent equation, the graph is symmetric with respect to the polar axis (the horizontal axis). For example, if $r=\cos \theta$ and we replace θ by $-\theta$, we get $r=\cos (-\theta)=\cos \theta$ since cosine is an even function. Since this is what we started with, we know that the graph is symmetric with respect to the polar axis.
- If replacing (r, θ) by $(r, \pi-\theta)$ or $(-r,-\theta)$ gives an equivalent equation, the graph is symmetric with respect to the line $\theta=\pi / 2$ (the vertical axis). For example, if $r=\sin \theta$, replacing r by $-r$ and θ by $-\theta$ gives $-r=\sin (-\theta)=-\sin \theta$. After we cancel out the negative signs, this is exactly what we started with, so we know that the graph of $r=\sin \theta$ is symmetric with respect to the line $\theta=\pi / 2$.
- If replacing (r, θ) by $(r, \pi+\theta)$ or $(-r, \theta)$ gives an equivalent equation, the graph is symmetric with respect to the pole (origin). For example, $r=5$ and $\theta=\pi / 4$ satisfy this criterion.

2 Types of Polar Graphs

- The equation for the graph of a limaçon has the form $r=a \pm b \cos \theta$ or $r=a \pm b \sin \theta$. If $a=b$, the graph is called a cardioid. The graphs of some limaçons look like:

Note: These graphs may be symmetric with respect to the x-axis instead of the y-axis. See Figure 4 on page 543 of the book for examples.

- Figure-eight-shaped curves are called lemniscates. The equation has the form $r^{2}= \pm a \cos 2 \theta$ or $r^{2}= \pm a \sin 2 \theta$.
- The equation for the graph of a rose has the form $r=a \cos n \theta$ or $r=a \sin n \theta$. If n is odd, the graph has n leaves. If n is even, the graph has $2 n$ leaves. In general, the graph looks like

- Spirals have equations of the form $r=a \theta$.

Examples

Sketch the graph of each of the following functions. Identify what kind of graph the equation represents, as well as what kind of symmetry exists.

1. $r=4 \sin \theta$

This is a limaçon that is symmetric about the vertical axis. Specifically, it is a circle of radius 2 centered at the point $(0,2)$. The graph looks like:

2. $r^{2}=-16 \cos 2 \theta$

This is a lemniscate that is symmetric with respect to the horizontal axis. The graph looks like:

3. $r=4-3 \sin \theta$

This is the graph of a limaçon that is symmetric with respect to the vertical axis. The graph looks like:

4. $r=2 \theta$

This is the graph of a spiral. There is no symmetry. The graph was sketched in class.
5. $r=\sqrt{2}-\sqrt{2} \sin \theta$

This is the graph of a cardioid that is symmetric with respect to the vertical axis.

6. $r=4 \cos 2 \theta$

This is the graph of a rose with 4 petals. It is symmetric with respect to the horizontal axis. The graph looks like:

