Section 10.6, Graphs of Polar Equations

Homework: 10.6 #1-37 odds

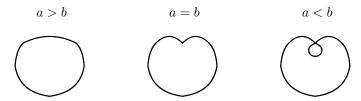
1 Symmetry in Graphing with Polar Coordinates

Symmetry is a helpful tool when graphing in Polar Coordinates.

- If replacing (r, θ) by $(r, -\theta)$ gives an equivalent equation, the graph is symmetric with respect to the polar axis (the horizontal axis). For example, if $r = \cos \theta$ and we replace θ by $-\theta$, we get $r = \cos(-\theta) = \cos \theta$ since cosine is an even function. Since this is what we started with, we know that the graph is symmetric with respect to the polar axis.
- If replacing (r, θ) by $(r, \pi \theta)$ or $(-r, -\theta)$ gives an equivalent equation, the graph is symmetric with respect to the line $\theta = \pi/2$ (the vertical axis). For example, if $r = \sin \theta$, replacing r by -r and θ by $-\theta$ gives $-r = \sin(-\theta) = -\sin \theta$. After we cancel out the negative signs, this is exactly what we started with, so we know that the graph of $r = \sin \theta$ is symmetric with respect to the line $\theta = \pi/2$.
- If replacing (r, θ) by $(r, \pi + \theta)$ or $(-r, \theta)$ gives an equivalent equation, the graph is symmetric with respect to the pole (origin). For example, r = 5 and $\theta = \pi/4$ satisfy this criterion.

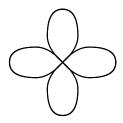
2 Types of Polar Graphs

• The equation for the graph of a **limaçon** has the form $r = a \pm b \cos \theta$ or $r = a \pm b \sin \theta$. If a = b, the graph is called a **cardioid**. The graphs of some limaçons look like:



Note: These graphs may be symmetric with respect to the x-axis instead of the y-axis. See Figure 4 on page 543 of the book for examples.

- Figure-eight-shaped curves are called **lemniscates**. The equation has the form $r^2 = \pm a \cos 2\theta$ or $r^2 = \pm a \sin 2\theta$.
- The equation for the graph of a **rose** has the form $r = a \cos n\theta$ or $r = a \sin n\theta$. If n is odd, the graph has n leaves. If n is even, the graph has 2n leaves. In general, the graph looks like



• Spirals have equations of the form $r = a\theta$.

Examples

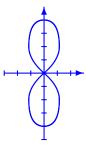
Sketch the graph of each of the following functions. Identify what kind of graph the equation represents, as well as what kind of symmetry exists.

1.
$$r = 4\sin\theta$$

This is a limaçon that is symmetric about the vertical axis. Specifically, it is a circle of radius 2 centered at the point (0,2). The graph looks like:

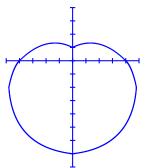
2.
$$r^2 = -16\cos 2\theta$$

This is a lemniscate that is symmetric with respect to the horizontal axis. The graph looks like:



3.
$$r = 4 - 3\sin\theta$$

This is the graph of a limaçon that is symmetric with respect to the vertical axis. The graph looks like:

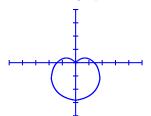


4.
$$r = 2\theta$$

This is the graph of a spiral. There is no symmetry. The graph was sketched in class.

5.
$$r = \sqrt{2} - \sqrt{2}\sin\theta$$

This is the graph of a cardioid that is symmetric with respect to the vertical axis.



6.
$$r = 4\cos 2\theta$$

This is the graph of a rose with 4 petals. It is symmetric with respect to the horizontal axis. The graph looks like:

