Section 10.5, The Polar Coordinate System

Homework: 10.5 \#1-35 odds

So far this semester, we have focused on the rectangular coordinate system (or Cartesian system) that includes points of the form (x, y). We will now be focusing on a different way to graph points in a plane, called the Polar Coordinate System.

We call the origin the pole, and the polar axis is equivalent to the positive x-axis.

1 Converting Between Polar and Rectangular Coordinates

To convert between rectangular and polar coordinates, we can use the following formulas:
$x=r \cos \theta$
$y=r \sin \theta$

$$
\begin{aligned}
\tan \theta & =\frac{y}{x} \\
r^{2} & =x^{2}+y^{2} \text { or } r=\sqrt{x^{2}+y^{2}}
\end{aligned}
$$

Examples

1. Convert $\left(3, \frac{\pi}{2}\right)$ to rectangular coordinates.

We can use $x=r \cos \theta$ and $y=r \sin \theta$ to get values for x and y :

$$
\begin{aligned}
& x=r \cos \theta=3 \cos \frac{\pi}{2}=0 \\
& y=r \sin \theta=3 \sin \frac{\pi}{2}=3
\end{aligned}
$$

so the point in rectangular coordinates is $(0,3)$.
2. Convert $(-1,-1)$ to polar coordinates.

First, we can find r :

$$
r=\sqrt{x^{2}+y^{2}}=\sqrt{(-1)^{2}+(-1)^{2}}=\sqrt{2}
$$

To find θ, we can use that the point is in Quadrant III along with $\tan \theta=y / x$ to get

$$
\begin{aligned}
\tan \theta & =\frac{-1}{-1}=1 \\
\theta & =\frac{5 \pi}{4}
\end{aligned}
$$

so the point is $\left(\sqrt{2}, \frac{5 \pi}{4}\right)$.
3 . Find 4 other ways to write the $(-3,2 \pi / 3)$.
We can use any coterminal angle to represent the same point, so we can use:

$$
(-3,-4 \pi / 3),(-3,8 \pi / 3)
$$

We can also eliminate the negative radius by adding $\pi\left(180^{\circ}\right)$ to the angle, so we get

$$
(3,5 \pi / 3),(3,11 \pi / 3)
$$

, where the second point uses an angle that is coterminal with the first point.
4. Sketch the graph of $r=3 \cos \theta$. Then show that $r=3 \cos \theta$ is a circle in the Cartesian coordinate system.

Similarly to graphing in rectangular coordinates, we can use several values of θ to see what value is given for r, then graph the function:

θ	0	$\pi / 6$	$\pi / 3$	$\pi / 2$	$2 \pi / 3$	$5 \pi / 6$	π	$7 \pi / 6$	$3 \pi / 2$	$11 \pi / 6$	2π
r	3	$3 \sqrt{3} / 2$	$3 / 2$	0	$-3 / 2$	$-3 \sqrt{3} / 2$	-3	$-3 \sqrt{3} / 2$	0	$3 \sqrt{3} / 2$	3

Since cosine is 2π-periodic, we only need to consider θ between 0 and 2π (or any other interval with length 2π). Graphing the information that we found, we get the graph:

Note: This gets traced twice when graphing between $\theta=0$ and 2π.
To rigorously show that $r=3 \cos \theta$ is a circle, we can change variables to the Cartesian coordinate system, then verify that it has the form $(x-a)^{2}+(y-b)^{2}=c^{2}$.

$$
\begin{aligned}
r & =3 \cos \theta \\
\sqrt{x^{2}+y^{2}} & =3 \frac{x}{r} \\
\sqrt{x^{2}+y^{2}} & =3 \frac{x}{\sqrt{x^{2}+y^{2}}} \\
x^{2}+y^{2} & =3 x \\
x^{2}-3 x+y^{2} & =0 \quad \text { Completing the square, we get } \\
x^{2}-3 x+\frac{9}{4}+y^{2} & =\frac{9}{4} \\
\left(x-\frac{3}{2}\right)^{2}+y^{2} & =\frac{9}{4}
\end{aligned}
$$

which is a circle of radius $\sqrt{9 / 4}=3 / 2$ centered at the point $(3 / 2,0)$. This agrees with our graph.

2 Polar Equations

2.1 Lines

Let $P=(r, \theta)$ represent a point on the line, d be the shortest distance from the origin to the line, and θ_{0} be the angle from the polar axis to the closest point on the line. Then, we can sketch a
triangle and see that:

$$
\begin{aligned}
& \cos \left(\theta_{0}-\theta\right)=\frac{d}{r} \text { or } \\
& r=\frac{d}{\cos \left(\theta_{0}-\theta\right)}=\frac{d}{\cos \left(\theta-\theta_{0}\right)}
\end{aligned}
$$

since cosine is an even function.

2.2 Circles

Let $P=(r, \theta)$ represent a point on the circle, a be the radius of the circle, c be the shortest distance from the origin to the center of the circle, and θ_{0} be the angle from the polar axis to the line to the center of the circle. Then, we can sketch a triangle and see that

$$
a^{2}=r^{2}+c^{2}-2 r c \cos \left(\theta-\theta_{0}\right)
$$

by the Law of Cosines.
If $c=a$, the circle passes through the origin and the equation simplifies to

$$
r=2 a \cos \left(\theta-\theta_{0}\right)
$$

If $\theta_{0}=0$, the center of the circle is on the x-axis, and the equation simplifies to $r=2 a \cos (\theta)$.
If $\theta_{0}=\pi / 2$, the center of the circle is on the y-axis, and the equation simplifies to $r=2 a \sin (\theta)$.

2.3 Conics: Parabolas, Hyperbolas, and Ellipses

Assume that the focus F is at the origin, and let $P=(r, \theta)$ be a point on the conic. Let ℓ be a line. The eccentricity e is the ratio of the distance from P to F to the distance from P to ℓ. Also let d be the distance from F to the line ℓ and θ_{0} be the angle of that direction. Then,

$$
|P F|=e|P \ell|
$$

where $|P Q|$ is the distance between points P and Q. Then, if a is the length of the side of the right triangle including points F and P along the shortest line to ℓ,

$$
\begin{aligned}
& r=e|P L| \\
& \cos \left(\theta-\theta_{0}\right)=\frac{a}{r} \quad \text { so } \quad a=r \cos \left(\theta-\theta_{0}\right), \text { and } \\
& |P \ell|=d-a=d-r \cos \left(\theta-\theta_{0}\right) \quad \text { Then, the equation becomes } \\
& r=e\left(d-r \cos \left(\theta-\theta_{0}\right)\right) \quad \text { Solving for } r, \text { we see that } \\
& r=\frac{e d}{1+e \cos \left(\theta-\theta_{0}\right)}
\end{aligned}
$$

If $0<e<1$, the graph is an ellipse. If $e=1$, this is the equation of a parabola. If $e>1$, the graph is a hyperbola.

Examples

Name the curve with the given polar equation. If it is a conic, give its eccentricity. Sketch the graph.

1. $r=\frac{4}{2+2 \cos (\theta-\pi / 3)}$

We can first reduce the fraction to become $r=\frac{2}{1+\cos (\theta-\pi / 3)}$, so we see that this is a conic with eccentricity 1 (in other words, the graph will be a parabola). Then, the graph is

This is the graph of a parabola, but it is "tilted" from how we often see them in algebra classes $\left(y=a x^{2}+b x+c\right)$.
2. $r=-4 \cos (\theta-\pi / 4)$

This is the equation of a circle of radius 2 through the origin. We can rewrite the equation as $r=4 \cos (\theta-5 \pi / 4)$, so this is a circle centered on the line $\theta=5 \pi / 4$:

3. $\theta=\frac{2 \pi}{3}$

This is the equation of a line:

