Some formulas to know for Exam 2:

Chapter 4

Section 4B:
Interest compounded n times a year:

$$
A=P\left(1+\frac{A P R}{n}\right)^{|n Y|} \text { page } 235
$$

$A P Y=\left(1+\frac{A P R}{n}\right)^{n}-1 \quad$ The definition is given on page 237 (formula given in class).
Interest compounded continuously:

$$
\begin{aligned}
& A=P e^{|A P R \times Y|} \quad \text { page } 239 \\
& A P Y=e^{A P R}-1 \quad \text { The definition is given on page } 237 \text { (formula given in class). }
\end{aligned}
$$

Section 4C:

$$
\begin{aligned}
& \text { total return }=\frac{(A-P)}{P} \text { page } 253 \\
& \text { annual return }=\left(\frac{A}{P}\right)^{\mid 1 / Y)}-1 \quad \text { page } 253
\end{aligned}
$$

Note: The Savings Plan Formula (page 247) will be given on the exam, but be sure to know how the variables are defined.

Section 4D:

The Loan Payment Formula (page 271) will be given on the exam, but be sure to know how the variables are defined.

Chapter 8

Section 8B:

$$
\begin{aligned}
& Q=Q_{0} \times 2^{t / T_{\text {danole }}} \text { page } 524 \text { (with notation from section 9C) } \\
& Q=Q_{0} \times\left(\frac{1}{2}\right)^{t / T_{\text {wat }}} \text { page } 528 \text { (with notation from section 9C) } \\
& T_{\text {double }}=\frac{\log _{10} 2}{\log _{10}(1+r)} \text { page } 530
\end{aligned}
$$

$$
T_{\text {half }}=-\frac{\log _{10} 2}{\log _{10}(1+r)} \quad \text { page } 530
$$

Properties of logarithms: page 531 (some of these were only given in class)

$$
\log _{b} b^{x}=x
$$

$$
b^{\log _{b} x}=x
$$

$$
\log _{b} x y=\log _{b} x+\log _{b} y
$$

$$
\log _{b} a^{x}=x \log _{b} a
$$

$$
\log _{b} \frac{x}{y}=\log _{b} x-\log _{b} y
$$

$$
\log _{b} \frac{1}{x}=-\log _{b} x
$$

$$
\log _{b} 1=0
$$

$$
\log _{b} b=1
$$

Chapter 9

Section 9B:

$$
\begin{aligned}
& m=\text { rate of change }=\text { slope }=\frac{\text { change in dependent variable }}{\text { change in independent variable }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \text { page } 572 \\
& y=m x+b \text { page } 577
\end{aligned}
$$

Section 9C:

$$
Q=Q_{0} \times(1+r)^{t} \quad \text { page } 587
$$

