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Airy Processes

e Fundamental (but new!) random processeson R (i.e. = —
A(x) a random process)

e Are believed to govern the long time, large scale
spatial fluctuations of random growth models in the KPZ
universality class

e We will describe them through two models: /ast passage
percolation and the stochastic heat equation



Last Passage Percolation
e Maximum of correlated random variables

e Input is iid random variables w; ; for (i, 7) € N

(M, N)

ff

LP"™(M,N) := v
(M, N) w:(O,g;l—%?:M,N)Zw

veTm

(0,0)



Last Passage Percolation

o For w; ; ~ Geometric(q) the model becomes integrable

e Is a formula for the exact distribution of LPo"(M, N)

(M, N)

ﬁ

LP" (M, N) := v
( ’ > W:(O,g)n—a;?M,N) Z *

(0,0)

veTm



Last Passage Percolation

o For w; ; ~ Geometric(q) the model becomes integrable

e Is a formula for the exact distribution of Lr*"(M, N)

e Goes through the Robinson-Schensted-Knuth (RSK)
bijection

e Deterministic, combinatorial bijection from arrays of
non-negative integers to pairs of semi-standard Young
tableaux with the same shape

e Length of top row of the shape is LP°™(Af, N)



Last Passage Percolation

e For w;; ~ Geometric(q) the induced measure on the
shape is Schur measure

e Can study statistics of the shape using Schur functions
(a special family of polynomials that are a basis for the
space of symmetric polynomials of a given degree)

e Representation of Schur functions via determinants
(Jacobi-Trudi identities) leads to representation of
probabilities in terms of determinants



Last Passage Percolation

e Distribution of the passage time:
P (Lpomt(Ma N)<n-—N+ 1) = det(I — K)€2{n+1,n+2,...}

where K : Ny x Ny — R is given by

_ 'VN—le(U)pN—l(U) — pN—1(U)pN(U) \/ (

K(u,v) T p— w(u)w(v)

with w : Ny — R given by
k+M—N

_k
w(’f)q( IV )

and py : Ny — R Is the degree n monic orthogonal
polynomial with respect to the weight w, and ~y its L? norm



Last Passage Percolation

e Asymptotic statistics of the passage time:

q -+ 1/6 1+ 4/3
 — _ o\ @, (1+/9)
l1—q' 1 —q
e Strong Law:
1

_— 7 point
L (NaN)qu

e Fluctuations:

PR (N, N) — N (0
O'qu/B N—00

> Tracy-Widom GUE distribution



Tracy-Widom GUE Distribution
e Probability distribution with CDF

FGUE(S) — det([ — PSKAiPS)LQ(]R)

where P, is projection onto the interval (s, 00), and Ky; is
the Airy kernel (matrix)

©.@)

Ki(z,y) = Ai(x + NAi(y + N)dA

The Airy function Ai(x)




Last Passage Percolation

e Can turn this into a process by looking at the passage
time at points “near” (N, N)

(M, N)

ﬁﬁ

e How near is near?

(0,0)

o Turns out to be scale N?/3 away from (N, N)



Last Passage Percolation

e Can turn this into a process by looking at the passage
time at points “near” (N, N)

(M, N)

ﬁﬁ

LPO"(N 4w, N — u) == ;N + coeNV3HR™ (3N~

(0,0)



Process of Passage Times
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Last Passage Percolation
e Theorem: [Joh03]

HR™ (u) 9, As(u) — u?

N—00

as a process in u (in the topology of uniform convergence
of continuous functions on compact sets)

e Properties:
e the process u — Ay(u) is stationary
e its one-point distributions are Tracy-Widom GUE

e there is a formula (in fact several) for the multi-point
distributions of A,, I.e.

P(As(uy) < zy,... As(uy) < x,)



Last Passage Percolation
e Theorem: [Joh03]

HR™ (u) 9, As(u) — u?

N—00

as a process in u (in the topology of uniform convergence
of continuous functions on compact sets)

e Properties:
e the process u — Ay(u) is stationary
e its one-point distributions are Tracy-Widom GUE

e Next time: a formula for

P(As(u) < g(u) for all u € [r,1])



Last Passage Percolation

e Some variants of the passage times are integrable

e Can be described by modifying initial conditions

4,—‘—J (M, N)

L'¥(M, N) := max max E Wy
€L i(i,—1)
V€7T



Last Passage Percolation

e Some variants of the passage times are integrable

e Can be described by modifying initial conditions

4,—‘—J (M, N)

LBY(N +u, N —u) = ;N 4+ o N3 HI (¢ N 723,



Last Passage Percolation

e Theorem: [Borodin-Ferrari-Pr’ ahofer-Sasamoto]

H™ () —" Ai(u)

N—oo

iIn the sense of convergence of finite-dimensional
distributions

e Properties:
e the process u — A;(u) is stationary
e its one-point distributions are Tracy-Widom GOE

e there is a formula (in fact several) for the multi-point
distributions of A4, i.e.

P(A(uy) < xq,... Ar(uy) < )



Last Passage Percolation

e Some variants of the passage times are integrable

e Stationary version: boundary a 2-sided random walk

(M, N)

(0,0)

LStat M N — INax 1Max (,LJ
9
ucs 7ru—> M N
VET



Last Passage Percolation

e Some variants of the passage times are integrable

e Stationary version: boundary a 2-sided random walk

(M, N)

(0,0)

LN 4+ u, N — ) := 1N + coNY3H ™ (egN~23)



Last Passage Percolation

e Theorem: [Borodin-Ferrari-Pr” ahofer]

d
A (1) =2y Aai(w)

N—o0

iIn the sense of convergence of finite-dimensional
distributions

e Properties:
e the process u — A;(u) is not stationary

o A..: 1S a double-sided Brownian motion with a random
height shift at the origin



Last Passage Percolation

e Can also mix boundary conditions

e The corner-flat process

——(M,N)

(0,0)

Lhalf—line(N +u, N — ’LL) — /N + CQNl/BHR]aH_hne(CgN_Q/B’LL)



Last Passage Percolation

e Theorem: [Borodin-Ferrari-Sasamoto]

ghattie )y — 4?1 {u > 0} N(i> Aoyq(u)
— 00

in the sense of convergence of finite-dimensional
distributions

e Properties:
e the process u — A,_,1(u) is not stationary
e one-point distribution of A, ,;(x) is known
o A (u+v) = As(u) as v — oo

o Aoi(u+v) = 234,(27%3u) as v — —oc



Last Passage Percolation

e Can also mix boundary conditions

e The flat-stat process

(M, N)

Lﬂat—stat(N + u, N — U) _ ClN 4 CQNI/BHZ%at_Stat(CgN_2/SU)



Last Passage Percolation
e Theorem: (I think)

d
H]%at—stat<u) L) A1—>BM<U>

in the sense of convergence of finite-dimensional
distributions

e Properties:
e the process u — A, ,pm(u) is not stationary
e one-point distribution of A, _.g\(x) is known
o A .pm(u+v) = Ageat(u) @S v — 0o

® .A1_>BM(U + v) — Al(u) as v — —o0



Last Passage Percolation

e Can also mix boundary conditions

e The corner-stat process

(M, N)

Lcorner—stat(N +u, N — U) — /N + CQNl/gH]C\?mer_Stat(CgN_Q/SU)



Last Passage Percolation
e Theorem: (I think)

corner-sta d
HEmerstat () — 421 {u < 0} LGN Ao ()

N—o0

in the sense of convergence of finite-dimensional
distributions

e Properties:
e the process u — A, ,pnm(u) is not stationary
e one-point distribution of A, .g\(x) is known
o Ay .pm(u+v) = Ageat(u) @S v — 0o

® A2_>BM(U + v) — Az(u) as v — —o0



Airy Processes

e In a sense, the A, process is the “fundamental” process
and all other processes can be derived from it (at least
their one-point distributions)

e Follows because general Initial conditions are a
superposition of corner initial conditions

e Example:

Lme(N) = _max LPo"(N + k, N — k)

Translated into scaling limits this becomes

Au(z) = sup { Ag(x) — 2°)

reR



Stochastic Heat Equation

e Variational formula relation between different processes
can be understood in terms of the stochastic heat
equation

1
07 = 5002 +WZ, Z(0.7) = by(x)

where W is space-time white noise

e Without the noise term the solution is

o(t,z) = e "%/ 2t



Stochastic Heat Equation

e Variational formula relation between different processes
can be understood in terms of the stochastic heat
equation

1
07 = 5002 +WZ, Z(0.7) = by(x)

where W is space-time white noise

e With the noise term the solution is p(t,x) times a
stationary process

Z(t,x) = o(t,z)e " * exp {tl/BAt(t_Z/Baz)}

e Conjecture: A;(xr) — Ay(x) ast — oo, on the process
level

e Known for the one-dimensional distributions



Stochastic Heat Equation

e Now use that solution is linear in the initial data

0,7 = %amzf + W2, Z:0,1) =1
e On the one hand, we can define
Zi(t,x) = e/ exp {tl/SAtﬂat(t_2/3x)}
and we expect that A" (z) — A;(z). On the other hand

Zi(t, x) = / o(t,x —y)e P exp {t” SAE (- y))} dy

e Steepest descent type heuristic suggests

tl/?’Atﬂat(t_Q/?):U) ~ Sup {10g o(t,x —y) + tl/BAt(t_Q/g(x B y))}
yeR



Stochastic Heat Equation

e Now use that solution is linear in the initial data

0,7 = %amzf + W2, Z:0,1) =1
e On the one hand, we can define
Zi(t,x) = e/ exp {t1/3Atﬂat(t_2/3x)}
and we expect that A" (z) — A;(z). On the other hand

Zi(t, x) = / o(t,x —y)e P exp {t” SAE (- y))} dy

e Using statistical scaling properties one gets

tl/SA?at(t_z/?’:v) ~ Sup {k)g o(t,x —y) + tl/gAt(t_z/g(x B y))}
yeR



Stochastic Heat Equation

e Now use that solution is linear in the initial data

O, 7 = %amzf +WZ, Zi{0,2) =1
e On the one hand, we can define
Zi(t,x) = e/ exp {tl/SAtﬂat(t_2/3x)}
and we expect that A" (z) — A;(z). On the other hand
Zi(t, x) ::/Q(t, x — y)e_t/24 exp {tl/SAt(t_Q/?’(aj — y))} dy
e Using statistical scaling properties one gets

AP () ~ sup {—(z—y)’+ Az —y)}



Stochastic Heat Equation

e Now use that solution is linear in the initial data

O, 7 = %amzf +WZ, Zi{0,2) =1
e On the one hand, we can define
Zi(t,x) = e/ exp {tl/SAtﬂat(t_2/3x)}
and we expect that A" (z) — A;(z). On the other hand
Zi(t, x) ::/Q(t, x — y)e_t/24 exp {tl/SAt(t_Q/?’(aj — y))} dy
e Using statistical scaling properties one gets

AP () ~ sup {—(z—y)’+ Az —y)}



Stochastic Heat Equation

e Now use that solution is linear in the initial data

0,7 = %amzf + W2, Z40,1) =1
e On the one hand, we can define
Zi(t,x) = e/ exp {tl/SAtﬂat(t_2/3x)}
and we expect that A" (z) — A;(z). On the other hand
Zi(t, x) ::/Q(t, x — y)e_t/24 exp {tl/SAt(t_Q/?’(aj — y))} dy
e Now taking t — oo one gets

A () ) sup {—(ZE —y)? + As(x — y)}

yeR



Hitting Probabilities for A,
P(Asy(u) < g(u) for all uw € |I,7])

e Simplifications:
e cantake |I,r] = [0,r —[] = |0, T] by stationarity of A,

e can replace g with g(t) = g(l +r —t) by invariance of A,
under u — —u

e There are formulas for

P(As(up) < zq, ..., As(u,) < )

expressed in terms of Fredholm determinants



Fredholm Determinants
e Recall the Tracy-Widom GUE distribution has CDF

FGUE(3> — det([ — PSKAiPs)LQ(R)

where P, is projection onto the interval (s, 00), and Ky; is
the Airy kernel (matrix)

©.@)

Kai(z,y) = Ai(x + NAi(y + N)dA

The Airy function Ai(x)




Fredholm Determinants
e Recall the Tracy-Widom GUE distribution has CDF

FGUE(3> — det([ — PSKAiPs)LQ(R)

where P, is projection onto the interval (s, 00), and Ky; is
the Airy kernel (matrix)

Kai(z,y) = Ai(x + N Ai(y + N)dA
0

o Ai(z) solves HAi = 0, where H = —9? + x is the Airy
Hamiltonian, boundary condition is Ai(x) — 0 as x — ¢

HAI(- + A) = —AAi(- + \)

SO K ,; IS projection onto the negative eigenspace of H



Fredholm Determinants
e Recall the Tracy-Widom GUE distribution has CDF

FGUE(3> — det([ — PSKAiPs)LQ(R)

where P, is projection onto the interval (s, 00), and Ky; is
the Airy kernel (matrix)

Kai(z,y) = /OOO Ai(x + N Ai(y + N)dA

e Also, think of everything as matrices
e K,; is a matrix determined by the Airy function

o P,Ka;P; is the lower [s,00) X [s,00) block of the Kj;
matrix, zero elsewhere



Fredholm Determinants
e OK fine, it's a matrix, so what does det mean?

e Defn: If K is an integral operator on L*(X, du) with kernel
K(x,y), i.e.

(Kf)(z) = /K(aﬁ, y) f(y) du(y)

then by definition

0.9 Aln’
det(I + AK) =1+ Z J/X . /Xdet[K(xi, Ti)li =1 dpxr) . . . dp(e,)
n=1

© Why?

e It holds in finite dimensions too!



Fredholm Determinants
e Let K be an n x n matrix

n

A det(I+AK) =) apAl
k=0

IS a degree n polynomial in A
o a;y = 05 det(I + \K)
e Use that the determinant is a linear function of each of its
columns, so if M(\) = [My(\)|My(N)] ... |M,(N\)] then
det M (X + €)=det[M () + €OMi(N)| ... [My(N) + €eO\M,(N)] + O(€?)

=det M(X) + €Y det[Mi(AN)]...|OhMi(N)] . .. [My(\)]
k=1



Fredholm Determinants
e Let K be an n x n matrix

n

A det(I+AK) =) apAl
k=0

IS a degree n polynomial in A
o a;y = 05 det(I + \K)
e Use that the determinant is a linear function of each of its

columns, so if M(\) = [My(\)|My(N)] ... |M,(N\)] then

Ay det M (A Zdet M) [OME(N)] - .. [ M (V)]

a)\(] + )\K)k = K



Fredholm Determinants: Simple Example

0@ )\n
det(1+w>:1+zm / / det[K (z, 2;)]7 i dp(x1) ...
n—=1 " X X

e Take K(x,y) = itk

—5= on L*(R)

s —x?/2

det(I — P,KP;) = /
oo V2T

dp(zn)



Multipoint Distributions for A,

.....

with f(t;,z) = 1{z > t;} and K§' the extended Airy kernel

e Another formula that is more useful for us

det(I — Ka; + Py p, et P o=t I, oy

n

with P, f(z) =1{z <a} f(z),and H = -0 + x
e Want a formula for P (Ay(u) < g(u) for all u € [0,T)

e Take a fine mesh ¢, = k27T with £ = 0,1,...,2", then
take a limit of the above formula as n — >

e Clearly easier to do this with the second formula



Multipoint Distributions for A,

e Another formula that is more useful for us

det(I — Ka; + lee(tl_tzmpme(t?_t?’)}[ . PanTHKAi>L2<R)
with P, f(z) =1{z < a} f(z),and H = —0* +x
e Want a formula for P (Ay(u) < g(u) for all u € [0,T)

e Take a fine mesh ¢, = k27T with £ = 0,1,...,2", then
take a limit of the above formula as n — >

e Clearly easier to do this with the second formula
e Take a limit of the operator

P

9<t1>€<t1_t2)Hpg(t2)€<t2_t3)H . 6<t”_1_tn>HP



e Take a limit of the operator

P

g(tl)e(h—w)]‘fpg(tz)e(tQ—tg)H o €<tn—1—tn)Hp

o For ¢t > 0, if we define u(t, z) = (e f)(z) then u solves
Ou=—Hu=0u—zu, u(0,7)= f(z)

e So if we apply this operator to a function,
e it Kills off the function above g(t,),

e puts that in as an initial condition and solves a heat
equation to time ¢, — ¢,,_1,

o then Kills off the solution above g(¢,,—;)

e puts that in as an initial condition and solves a heat
equation to time ¢,,_; — t,,_o,

e ... (now simplify and replace g with g)



e Take a limit of the operator

pg(h)e(tl—tQ)Hpg(tz)e(tg—tg)H o e(tn_l—tn)Hp
o For ¢t > 0, if we define u(t, z) = (e f)(z) then u solves

Ou=—Hu=0u—zu, u(0,7)= f(z)

e Hence if we let u(t, x) be the solution to

O = —Hu for v < g(t), u(0,2) = f(x)1{zx < g(0)},
u(t,z) = 0 for z > g(t)

and let ©7. be the operator which takes f(-) to «(T,-), then

Pyt Pyyel ™1 el TPy y — 0f



Hitting Probabilities for A,

P (Asfth) < gltr), .. Aslt) < gltn) _
= det(] — Ka; + Pg(tn)e(tl_tQ)HP ( )e(tQ—t?’)H R <t1)6<t”_t1>HKAi)L2(R)

g tn—l g

e Hence we conclude that
P (Ay(u) < g(u) for all u € [0,T)) = det(I — Ka; + 0%e’ Ky)
e O7. has an integral kernel and it can be computed, i.e.

u(T, ) = (&%) (x) = / 04z, )/ (y) dy

and there is an explicit formula for ©%(z, y)



Hitting Probabilities for A,

P (Asfth) < gltr), .. Aslt) < gltn) _
= det(] — Ka; + Pg(tn)e(tl_tQ)HP ( )e(tQ—t?’)H R (tl)e(t”_t1>HKAi)L2(R)

g tn—l g

e Hence we conclude that
P (Ay(u) < g(u) for all u € [0,T)) = det(I — Ka; + 0%e’ Ky)

e O7 has an integral kernel and it can be computed

O (x,y) = e T Bop(z,y)Py B(s) < g(s) — s* on [0, T]

(0)=2,B(T)=y—T? ( )
where B is a Brownian bridge

e Simplest case is clearly g(t) = m + t* for m > 0



Hitting Probabilities for A,

P(Ay(t) <m+t*for — L <t <L)=det(] — Ka; + O’ Ky)

with ©; = @[99;;] m



Endpoint Distribution for Geometric LPP

(M, N)

ff

LPO™ (M N) = max Z Wy

VET(

(0,0)

elet Ky = argmax,_ n y LPP"(N + k, N — k) (rightmost
point)



e Then csNlky @, argmax,cg{As(t) — t*}



Hitting Probabilities for A,



Slides Produced With
Asymptote: The Vector Graphics Language

symploie

http://asymptote.sf.net

(freely available under the GNU public license)



