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Airy Processes

•Fundamental (but new!) random processes on R (i.e. x 7→
A(x) a random process)

•Are believed to govern the long time, large scale
spatial fluctuations of random growth models in the KPZ
universality class

•We will describe them through two models: last passage
percolation and the stochastic heat equation



Last Passage Percolation

•Maximum of correlated random variables

• Input is iid random variables ωi,j for (i, j) ∈ N2
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(M,N)

π

Lpoint(M,N) := max
π:(0,0)→(M,N)

∑
v∈π
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Last Passage Percolation

•For ωi,j ∼ Geometric(q) the model becomes integrable

• Is a formula for the exact distribution of Lpoint(M,N)
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Last Passage Percolation

•For ωi,j ∼ Geometric(q) the model becomes integrable

• Is a formula for the exact distribution of Lpoint(M,N)

•Goes through the Robinson-Schensted-Knuth (RSK)
bijection

•Deterministic, combinatorial bijection from arrays of
non-negative integers to pairs of semi-standard Young
tableaux with the same shape

•Length of top row of the shape is Lpoint(M,N)



Last Passage Percolation

•For ωi,j ∼ Geometric(q) the induced measure on the
shape is Schur measure

•Can study statistics of the shape using Schur functions
(a special family of polynomials that are a basis for the
space of symmetric polynomials of a given degree)

•Representation of Schur functions via determinants
(Jacobi-Trudi identities) leads to representation of
probabilities in terms of determinants



Last Passage Percolation

•Distribution of the passage time:

P
(
Lpoint(M,N) ≤ n−N + 1

)
= det(I −K)`2{n+1,n+2,...}

where K : N0 × N0 → R is given by

K(u, v) =
γN−1

γN

pN(u)pN−1(v)− pN−1(u)pN(v)

u− v
√
w(u)w(v)

with w : N0 → R given by

w(k) = qk
(
k + M −N
M −N

)
and pN : N0 → R is the degree n monic orthogonal
polynomial with respect to the weight w, and γN its L2 norm



Last Passage Percolation

•Asymptotic statistics of the passage time:

µq := 2

√
q + q

1− q , σq :=
q1/6(1 +

√
q)4/3

1− q

•Strong Law:

1

N
Lpoint(N,N)

a.s.−−−→
N→∞

µq

•Fluctuations:

Lpoint(N,N)− µqN
σqN 1/3

(d)−−−→
N→∞

Tracy-Widom GUE distribution



Tracy-Widom GUE Distribution

•Probability distribution with CDF

FGUE(s) = det(I − PsKAiPs)L2(R)

where Ps is projection onto the interval (s,∞), and KAi is
the Airy kernel (matrix)

KAi(x, y) =

∫ ∞
0

Ai(x + λ)Ai(y + λ)dλ



Last Passage Percolation

•Can turn this into a process by looking at the passage
time at points “near” (N,N)

(0, 0)

(M,N)

π

•How near is near?

•Turns out to be scale N 2/3 away from (N,N)



Last Passage Percolation

•Can turn this into a process by looking at the passage
time at points “near” (N,N)

(0, 0)

(M,N)

π

Lpoint(N + u,N − u) := c1N + c2N
1/3Hpoint

N (c3N
−2/3u)



Process of Passage Times
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Last Passage Percolation

•Theorem: [Joh03]

Hpoint
N (u)

(d)−−−→
N→∞

A2(u)− u2

as a process in u (in the topology of uniform convergence
of continuous functions on compact sets)

•Properties:

• the process u 7→ A2(u) is stationary

• its one-point distributions are Tracy-Widom GUE

• there is a formula (in fact several) for the multi-point
distributions of A2, i.e.

P (A2(u1) ≤ x1, . . .A2(un) ≤ xn)



Last Passage Percolation

•Theorem: [Joh03]

Hpoint
N (u)

(d)−−−→
N→∞

A2(u)− u2

as a process in u (in the topology of uniform convergence
of continuous functions on compact sets)

•Properties:

• the process u 7→ A2(u) is stationary

• its one-point distributions are Tracy-Widom GUE

• Next time: a formula for

P (A2(u) ≤ g(u) for all u ∈ [r, l])



Last Passage Percolation

•Some variants of the passage times are integrable

•Can be described by modifying initial conditions

(0, 0)

(M,N)

π

Lflat(M,N) := max
i∈Z

max
π:(i,−i)→(M,N)

∑
v∈π

ωv



Last Passage Percolation

•Some variants of the passage times are integrable

•Can be described by modifying initial conditions

(0, 0)

(M,N)

π

Lflat(N + u,N − u) := c1N + c2N
1/3H line

N (c3N
−2/3u)



Last Passage Percolation

•Theorem: [Borodin-Ferrari-Pr”ahofer-Sasamoto]

H line
N (u)

(d)−−−→
N→∞

A1(u)

in the sense of convergence of finite-dimensional
distributions

•Properties:

• the process u 7→ A1(u) is stationary

• its one-point distributions are Tracy-Widom GOE

• there is a formula (in fact several) for the multi-point
distributions of A1, i.e.

P (A1(u1) ≤ x1, . . .A1(un) ≤ xn)



Last Passage Percolation

•Some variants of the passage times are integrable

•Stationary version: boundary a 2-sided random walk

(0, 0)

(M,N)

π

Lstat(M,N) := max
u∈S

max
π:u→(M,N)

∑
v∈π

ωv



Last Passage Percolation

•Some variants of the passage times are integrable

•Stationary version: boundary a 2-sided random walk

(0, 0)

(M,N)

π

Lstat(N + u,N − u) := c1N + c2N
1/3Hstat

N (c3N
−2/3u)



Last Passage Percolation

•Theorem: [Borodin-Ferrari-Pr”ahofer]

Hstat
N (u)

(d)−−−→
N→∞

Astat(u)

in the sense of convergence of finite-dimensional
distributions

•Properties:

• the process u 7→ A1(u) is not stationary

• Astat is a double-sided Brownian motion with a random
height shift at the origin



Last Passage Percolation

•Can also mix boundary conditions

•The corner-flat process

(0, 0)

(M,N)

π

Lhalf-line(N + u,N − u) = c1N + c2N
1/3Hhalf-line

N (c3N
−2/3u)



Last Passage Percolation

•Theorem: [Borodin-Ferrari-Sasamoto]

Hhalf-line
N (u)− u21 {u ≥ 0} (d)−−−→

N→∞
A2→1(u)

in the sense of convergence of finite-dimensional
distributions

•Properties:

• the process u 7→ A2→1(u) is not stationary

• one-point distribution of A2→1(x) is known

• A2→1(u + v)→ A2(u) as v →∞

• A2→1(u + v)→ 21/3A1(2−2/3u) as v → −∞



Last Passage Percolation

•Can also mix boundary conditions

•The flat-stat process

(0, 0)

(M,N)

π

Lflat-stat(N + u,N − u) = c1N + c2N
1/3Hflat-stat

N (c3N
−2/3u)



Last Passage Percolation

•Theorem: (I think)

Hflat-stat
N (u)

(d)−−−→
N→∞

A1→BM(u)

in the sense of convergence of finite-dimensional
distributions

•Properties:

• the process u 7→ A1→BM(u) is not stationary

• one-point distribution of A1→BM(x) is known

• A1→BM(u + v)→ Astat(u) as v →∞
• A1→BM(u + v)→ A1(u) as v → −∞



Last Passage Percolation

•Can also mix boundary conditions

•The corner-stat process

(0, 0)

(M,N)

π

Lcorner-stat(N + u,N − u) = c1N + c2N
1/3Hcorner-stat

N (c3N
−2/3u)



Last Passage Percolation

•Theorem: (I think)

Hcorner-stat
N (u)− u21 {u ≤ 0} (d)−−−→

N→∞
A2→BM(u)

in the sense of convergence of finite-dimensional
distributions

•Properties:

• the process u 7→ A2→BM(u) is not stationary

• one-point distribution of A2→BM(x) is known

• A2→BM(u + v)→ Astat(u) as v →∞
• A2→BM(u + v)→ A2(u) as v → −∞



Airy Processes

• In a sense, the A2 process is the “fundamental” process
and all other processes can be derived from it (at least
their one-point distributions)

•Follows because general initial conditions are a
superposition of corner initial conditions

•Example:

Lline(N) = max
k=−N,...,N

Lpoint(N + k,N − k)

Translated into scaling limits this becomes

A1(x) = sup
x∈R

{
A2(x)− x2

}



Stochastic Heat Equation

•Variational formula relation between different processes
can be understood in terms of the stochastic heat
equation

∂tZ =
1

2
∂xxZ + WZ, Z(0, x) = δ0(x)

where W is space-time white noise

•Without the noise term the solution is

%(t, x) = e−x
2/2t
√

2πt



Stochastic Heat Equation

•Variational formula relation between different processes
can be understood in terms of the stochastic heat
equation

∂tZ =
1

2
∂xxZ + WZ, Z(0, x) = δ0(x)

where W is space-time white noise

•With the noise term the solution is %(t, x) times a
stationary process

Z(t, x) = %(t, x)e−t/24 exp
{
t1/3At(t

−2/3x)
}

•Conjecture: At(x) → A2(x) as t → ∞, on the process
level

•Known for the one-dimensional distributions



Stochastic Heat Equation

•Now use that solution is linear in the initial data

∂tZf =
1

2
∂xxZf + WZf, Zf(0, x) = 1

•On the one hand, we can define

Zf(t, x) = e−t/24 exp
{
t1/3Aflat

t (t−2/3x)
}

and we expect that Aflat
t (x)→ A1(x). On the other hand

Zf(t, x) =:

∫
%(t, x− y)e−t/24 exp

{
t1/3At(t

−2/3(x− y))
}
dy

•Steepest descent type heuristic suggests

t1/3Aflat
t (t−2/3x) ∼ sup

y∈R

{
log %(t, x− y) + t1/3At(t

−2/3(x− y))
}



Stochastic Heat Equation

•Now use that solution is linear in the initial data

∂tZf =
1

2
∂xxZf + WZf, Zf(0, x) = 1

•On the one hand, we can define

Zf(t, x) = e−t/24 exp
{
t1/3Aflat

t (t−2/3x)
}

and we expect that Aflat
t (x)→ A1(x). On the other hand

Zf(t, x) =:

∫
%(t, x− y)e−t/24 exp

{
t1/3At(t

−2/3(x− y))
}
dy

•Using statistical scaling properties one gets

t1/3Aflat
t (t−2/3x) ∼ sup

y∈R

{
log %(t, x− y) + t1/3At(t

−2/3(x− y))
}



Stochastic Heat Equation

•Now use that solution is linear in the initial data

∂tZf =
1

2
∂xxZf + WZf, Zf(0, x) = 1

•On the one hand, we can define

Zf(t, x) = e−t/24 exp
{
t1/3Aflat

t (t−2/3x)
}

and we expect that Aflat
t (x)→ A1(x). On the other hand

Zf(t, x) =:

∫
%(t, x− y)e−t/24 exp

{
t1/3At(t

−2/3(x− y))
}
dy

•Using statistical scaling properties one gets

Aflat
t (x) ∼ sup

y∈R

{
−(x− y)2 + At(x− y)

}



Stochastic Heat Equation

•Now use that solution is linear in the initial data

∂tZf =
1

2
∂xxZf + WZf, Zf(0, x) = 1

•On the one hand, we can define

Zf(t, x) = e−t/24 exp
{
t1/3Aflat

t (t−2/3x)
}

and we expect that Aflat
t (x)→ A1(x). On the other hand

Zf(t, x) =:

∫
%(t, x− y)e−t/24 exp

{
t1/3At(t

−2/3(x− y))
}
dy

•Using statistical scaling properties one gets

Aflat
t (x) ∼ sup

y∈R

{
−(x− y)2 + At(x− y)

}



Stochastic Heat Equation

•Now use that solution is linear in the initial data

∂tZf =
1

2
∂xxZf + WZf, Zf(0, x) = 1

•On the one hand, we can define

Zf(t, x) = e−t/24 exp
{
t1/3Aflat

t (t−2/3x)
}

and we expect that Aflat
t (x)→ A1(x). On the other hand

Zf(t, x) =:

∫
%(t, x− y)e−t/24 exp

{
t1/3At(t

−2/3(x− y))
}
dy

•Now taking t→∞ one gets

A1(x)
(d)
= sup

y∈R

{
−(x− y)2 +A2(x− y)

}



Hitting Probabilities for A2

P (A2(u) ≤ g(u) for all u ∈ [l, r])

•Simplifications:

• can take [l, r] = [0, r − l] = [0, T ] by stationarity of A2

• can replace g with ĝ(t) = g(l+ r− t) by invariance of A2

under u 7→ −u
•There are formulas for

P(A2(u1) ≤ x1, . . . ,A2(un) ≤ xn)

expressed in terms of Fredholm determinants



Fredholm Determinants

•Recall the Tracy-Widom GUE distribution has CDF

FGUE(s) = det(I − PsKAiPs)L2(R)

where Ps is projection onto the interval (s,∞), and KAi is
the Airy kernel (matrix)

KAi(x, y) =

∫ ∞
0

Ai(x + λ)Ai(y + λ)dλ



Fredholm Determinants

•Recall the Tracy-Widom GUE distribution has CDF

FGUE(s) = det(I − PsKAiPs)L2(R)

where Ps is projection onto the interval (s,∞), and KAi is
the Airy kernel (matrix)

KAi(x, y) =

∫ ∞
0

Ai(x + λ)Ai(y + λ)dλ

•Ai(x) solves HAi = 0, where H = −∂2
x + x is the Airy

Hamiltonian, boundary condition is Ai(x)→ 0 as x→∞

HAi(· + λ) = −λAi(· + λ)

so KAi is projection onto the negative eigenspace of H



Fredholm Determinants

•Recall the Tracy-Widom GUE distribution has CDF

FGUE(s) = det(I − PsKAiPs)L2(R)

where Ps is projection onto the interval (s,∞), and KAi is
the Airy kernel (matrix)

KAi(x, y) =

∫ ∞
0

Ai(x + λ)Ai(y + λ)dλ

•Also, think of everything as matrices

• KAi is a matrix determined by the Airy function

• PsKAiPs is the lower [s,∞) × [s,∞) block of the KAi

matrix, zero elsewhere



Fredholm Determinants

•OK fine, it’s a matrix, so what does det mean?

•Defn: If K is an integral operator on L2(X, dµ) with kernel
K(x, y), i.e.

(Kf )(x) =

∫
K(x, y)f (y) dµ(y)

then by definition

det(I + λK) = 1 +

∞∑
n=1

λn

n!

∫
X

. . .

∫
X

det[K(xi, xj)]
n
i,j=1 dµ(x1) . . . dµ(xn)

•Why?

• It holds in finite dimensions too!



Fredholm Determinants

•Let K be an n× n matrix

λ 7→ det(I + λK) =

n∑
k=0

akλ
k

is a degree n polynomial in λ

• ak = 1
k!∂

k
λ det(I + λK)

•Use that the determinant is a linear function of each of its
columns, so if M(λ) = [M1(λ)|M2(λ)| . . . |Mn(λ)] then

detM(λ + ε)=det[M1(λ) + ε∂λM1(λ)| . . . |Mn(λ) + ε∂λMn(λ)] + O(ε2)

=detM(λ) + ε
n∑
k=1

det[M1(λ)| . . . |∂λMk(λ)| . . . |Mn(λ)]



Fredholm Determinants

•Let K be an n× n matrix

λ 7→ det(I + λK) =

n∑
k=0

akλ
k

is a degree n polynomial in λ

• ak = 1
k!∂

k
λ det(I + λK)

•Use that the determinant is a linear function of each of its
columns, so if M(λ) = [M1(λ)|M2(λ)| . . . |Mn(λ)] then

∂λ detM(λ) =

n∑
k=1

det[M1(λ)| . . . |∂λMk(λ)| . . . |Mn(λ)]

∂λ(I + λK)k = Kk



Fredholm Determinants: Simple Example

det(I + λK) = 1 +

∞∑
n=1

λn

n!

∫
X

. . .

∫
X

det[K(xi, xj)]
n
i,j=1 dµ(x1) . . . dµ(xn)

•Take K(x, y) = e−x
2/2√

2π
on L2(R)

det(I − PsKPs) =

∫ s

−∞

e−x
2/2

√
2π

dx



Multipoint Distributions for A2

P(A2(t1) ≤ x1, . . .A2(tn) ≤ xn) = det(I − f 1/2Kext
Ai f

1/2)L2({t1,...,tn}×R)

with f (tj, x) = 1 {x ≥ tj} and Kext
Ai the extended Airy kernel

•Another formula that is more useful for us

det(I −KAi + P̄x1
e(t1−t2)HP̄x2

e(t2−t3)H . . . P̄xne
(tn−t1)HKAi)L2(R)

with P̄af (x) = 1 {x ≤ a} f (x), and H = −∂2
x + x

•Want a formula for P (A2(u) ≤ g(u) for all u ∈ [0, T ])

•Take a fine mesh tk = k2−nT with k = 0, 1, . . . , 2n, then
take a limit of the above formula as n→∞
•Clearly easier to do this with the second formula



Multipoint Distributions for A2

•Another formula that is more useful for us

det(I −KAi + P̄x1
e(t1−t2)HP̄x2

e(t2−t3)H . . . P̄xne
THKAi)L2(R)

with P̄af (x) = 1 {x ≤ a} f (x), and H = −∂2
x + x

•Want a formula for P (A2(u) ≤ g(u) for all u ∈ [0, T ])

•Take a fine mesh tk = k2−nT with k = 0, 1, . . . , 2n, then
take a limit of the above formula as n→∞
•Clearly easier to do this with the second formula

•Take a limit of the operator

P̄g(t1)e
(t1−t2)HP̄g(t2)e

(t2−t3)H . . . e(tn−1−tn)HP̄g(tn)



•Take a limit of the operator

P̄g(t1)e
(t1−t2)HP̄g(t2)e

(t2−t3)H . . . e(tn−1−tn)HP̄g(tn)

•For t > 0, if we define u(t, x) = (e−tHf )(x) then u solves

∂tu = −Hu = ∂2
xu− xu, u(0, x) = f (x)

•So if we apply this operator to a function,

• it kills off the function above g(tn),

• puts that in as an initial condition and solves a heat
equation to time tn − tn−1,

• then kills off the solution above g(tn−1)

• puts that in as an initial condition and solves a heat
equation to time tn−1 − tn−2,

• ... (now simplify and replace g with ĝ)



•Take a limit of the operator

P̄g(t1)e
(t1−t2)HP̄g(t2)e

(t2−t3)H . . . e(tn−1−tn)HP̄g(tn)

•For t > 0, if we define u(t, x) = (e−tHf )(x) then u solves

∂tu = −Hu = ∂2
xu− xu, u(0, x) = f (x)

•Hence if we let u(t, x) be the solution to

∂t = −Hu for x < g(t), u(0, x) = f (x)1{x < g(0)},
u(t, x) = 0 for x ≥ g(t)

and let Θg
T be the operator which takes f (·) to u(T, ·), then

P̄g(t1)e
(t1−t2)HP̄g(t2)e

(t2−t3)H . . . e(tn−1−tn)HP̄g(tn) → Θg
T



Hitting Probabilities for A2

P (A2(t1) ≤ g(t1), . . .A2(tn) ≤ g(tn))

= det(I −KAi + P̄g(tn)e
(t1−t2)HP̄g(tn−1)e

(t2−t3)H . . . P̄g(t1)e
(tn−t1)HKAi)L2(R)

•Hence we conclude that

P (A2(u) ≤ g(u) for all u ∈ [0, T ]) = det(I −KAi + Θg
Te

THKAi)

•Θg
T has an integral kernel and it can be computed, i.e.

u(T, x) = (Θg
Tf )(x) =

∫
Θg
T (x, y)f (y) dy

and there is an explicit formula for Θg
T (x, y)



Hitting Probabilities for A2

P (A2(t1) ≤ g(t1), . . .A2(tn) ≤ g(tn))

= det(I −KAi + P̄g(tn)e
(t1−t2)HP̄g(tn−1)e

(t2−t3)H . . . P̄g(t1)e
(tn−t1)HKAi)L2(R)

•Hence we conclude that

P (A2(u) ≤ g(u) for all u ∈ [0, T ]) = det(I −KAi + Θg
Te

THKAi)

•Θg
T has an integral kernel and it can be computed

Θg
T (x, y) = e−Ty+T 3/3%T (x, y)PB̂(0)=x,B̂(T )=y−T 2

(
B̂(s) ≤ g(s)− s2 on [0, T ]

)
where B̂ is a Brownian bridge

•Simplest case is clearly g(t) = m + t2 for m > 0



Hitting Probabilities for A2

P(A2(t) ≤ m + t2 for − L ≤ t ≤ L) = det(I −KAi + ΘLe
2LHKAi)

with ΘL = Θ
g(t)=t2+m
[−L,L]



Endpoint Distribution for Geometric LPP

(0, 0)

(M,N)

π

Lpoint(M,N) := max
π:(0,0)→(M,N)

∑
v∈π

ωv

•Let κN = argmaxk=−N...N L
point(N + k,N − k) (rightmost

point)



•Then c3N
−1κN

(d)−→ argmaxt∈R{A2(t)− t2}



Hitting Probabilities for A2
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