Multiscale Analysis of Heterogeneous Media in the Peridynamic Formulation

Bacim Alali
Mathematics Department, University of Utah

Jointly with Robert Lipton (Louisiana State University)

Supported by a grant from The Boeing Company
Outline

1. Peridynamics and Continuum Applications.
Overview

The Classical Continuum Formulation.

The equation of motion (PDE)

\[\rho(x) \partial_t^2 u(x, t) = \nabla \cdot \sigma(x, t) + b(x, t), \quad \sigma = g(\nabla u) \]

\(u \): Displacement field
\(\rho \): Mass density
\(\sigma \): Stress tensor
\(g \): Constitutive model
\(b \): External force
Overview

The Classical Continuum Formulation.

The equation of motion (PDE)

\[\rho(x) \partial_t^2 u(x, t) = \nabla \cdot \sigma(x, t) + b(x, t), \quad \sigma = g(\nabla u) \]

- \(u \): Displacement field
- \(\rho \): Mass density
- \(\sigma \): Stress tensor
- \(g \): Constitutive model
- \(b \): External force
Overview

The Peridynamic Formulation
(Silling 2000).

The equation of motion (PIDE)

\[\rho(x) \partial_t^2 u(x, t) = \int_{H_\delta(x)} f(u'-u, x'-x) \, dx' + b(x, t), \quad u = u(x, t), \quad u' = u(x', t) \]
Overview

The Peridynamic Formulation
(Silling 2000).

The equation of motion (PIDE)

$$\rho(x) \frac{\partial^2 u(x,t)}{\partial t^2} = \int_{H_\delta(x)} f(u' - u, x' - x) \, dx' + b(x,t), \quad u = u(x,t), \quad u' = u(x',t)$$

- \(f\): Pairwise force (bond force). The force that \(x'\) exerts on \(x\).
- \(f\) depends on the relative position \(\xi = x' - x\), and the relative displacement \(\eta = u(x',t) - u(x,t)\).
- All constitutive information are included in \(f\).
- \(\delta\): Peridynamic horizon,

$$f(\eta, \xi) = 0, \quad \text{for } |\xi| > \delta.$$
Overview

The Peridynamic Formulation
(Silling 2000).

The equation of motion (PIDE)

\[\rho(x) \partial_t^2 u(x, t) = \int_{H_\delta(x)} f(u' - u, x' - x) \, dx' + b(x, t), \quad u = u(x, t), \quad u' = u(x', t) \]

- The pairwise force satisfies

\[f(-\eta, -\xi) = -f(\eta, \xi) \]

conservation of linear momentum

and

\[f(\eta, \xi) \times (\eta + \xi) = 0 \]

conservation of angular momentum

which implies that

\[f(\eta, \xi) = F(\eta, \xi)(\eta + \xi). \]
Example
The bond-stretch model

The bond force is given by

\[
f(\eta, \xi) = \begin{cases}
 c \ s(\xi) \frac{\eta + \xi}{|\eta + \xi|}, & s(\xi) < s_0, \\
 0, & \text{otherwise.}
\end{cases}
\]

where

\[
s(\xi) = \frac{|\eta + \xi| - |\xi|}{|\xi|}
\]

(bond stretch)

Prototype brittle fracture
The Classical Formulation vs Peridynamics

Classical Formulation
- Particles interact directly only through contact forces.
- Partial differential equations. All fields \((u, \sigma, \ldots)\) are sufficiently smooth \((u \in W^{k,p})\).
- ‘Incompatible’ with fracture, e.g.,
 - Special techniques for modeling crack growth.
 - If the crack location is not known, the situation is difficult.

Peridynamic Formulation
- Nonlocal theory. Particles interact across a finite distance.
- Integral equations. Displacement field \(u\) can be discontinuous \((u \in L^p)\).
- Compatible with fracture (equation of motion holds everywhere in a body regardless of discontinuities).
- Under smoothness assumptions, as \(\delta \to 0\)
 \[\int_{H_\delta(x)} f(u(x') - u(x), x' - x) \, dx' \to \nabla \cdot \sigma(x)\]
 (Emmrich and Weckner 2007, linear case) and (Silling and Lehoucq 2008, general case).

(Emmrich and Weckner 2007, linear case) and (Silling and Lehoucq 2008, general case).
The Classical Formulation vs Peridynamics

Classical Formulation

- Particles interact directly only through contact forces.
- Partial differential equations. All fields \((u, \sigma, \ldots)\) are sufficiently smooth \((u \in W^{k,p})\).
- ‘Incompatible’ with fracture, e.g.,
 - Special techniques for modeling crack growth.
 - If the crack location is not known, the situation is difficult.

Peridynamic Formulation

- Nonlocal theory. Particles interact across a finite distance.
- Integral equations. Displacement field \(u\) can be discontinuous \((u \in L^p)\).
- Compatible with fracture (equation of motion holds everywhere in a body regardless of discontinuities).
- Under smoothness assumptions, as \(\delta \to 0\)

\[
\int_{H_\delta(x)} f(u(x') - u(x), x' - x) \, dx' \to \nabla \cdot \sigma(x)
\]

(Emmrich and Weckner 2007, linear case) and (Silling and Lehoucq 2008, general case).
The Classical Formulation vs Peridynamics

Classical Formulation

- Particles interact directly only through contact forces.
- Partial differential equations. All fields \((u, \sigma, \ldots)\) are sufficiently smooth \((u \in W^{k,p})\).
- ‘Incompatible’ with fracture, e.g.,
 - Special techniques for modeling crack growth.
 - If the crack location is not known, the situation is difficult.

Peridynamic Formulation

- Nonlocal theory. Particles interact across a finite distance.
- Integral equations. Displacement field \(u\) can be discontinuous \((u \in L^p)\).
- Compatible with fracture (equation of motion holds everywhere in a body regardless of discontinuities).
- Under smoothness assumptions, as \(\delta \to 0\)

\[
\int_{H_\delta(x)} f(u(x') - u(x), x' - x) \, dx' \to \nabla \cdot \sigma(x)
\]

(Emmrich and Weckner 2007, linear case) and (Silling and Lehoucq 2008, general case).
The Classical Formulation vs Peridynamics

Classical Formulation

- Particles interact directly only through contact forces.
- Partial differential equations. All fields \((u, \sigma, \ldots)\) are sufficiently smooth \((u \in W^{k,p})\).
- ‘Incompatible’ with fracture, e.g.,
 - Special techniques for modeling crack growth.
 - If the crack location is not known, the situation is difficult.

Peridynamic Formulation

- Nonlocal theory. Particles interact across a finite distance.
- Integral equations. Displacement field \(u\) can be discontinuous \((u \in L^p)\).
- Compatible with fracture (equation of motion holds everywhere in a body regardless of discontinuities).
- Under smoothness assumptions, as \(\delta \to 0\)

\[
\int_{H_\delta(x)} f(u(x') - u(x), x' - x) \, dx' \to \nabla \cdot \sigma(x)
\]

(Emmrich and Weckner 2007, linear case) and (Silling and Lehoucq 2008, general case).
The Classical Formulation vs Peridynamics

Classical Formulation

- Particles interact directly only through contact forces.
- Partial differential equations. All fields (u, σ, \ldots) are sufficiently smooth $(u \in W^{k,p})$.
- ‘Incompatible’ with fracture, e.g.,
 - Special techniques for modeling crack growth.
 - If the crack location is not known, the situation is difficult.

Peridynamic Formulation

- Nonlocal theory. Particles interact across a finite distance.
- Integral equations. Displacement field u can be discontinuous $(u \in L^p)$.
- Compatible with fracture (equation of motion holds everywhere in a body regardless of discontinuities).
- Under smoothness assumptions, as $\delta \rightarrow 0$

\[
\int_{H_\delta(x)} f(u(x') - u(x), x' - x) \, dx' \rightarrow \nabla \cdot \sigma(x)
\]

(Emmrich and Weckner 2007, linear case) and (Silling and Lehoucq 2008, general case).
Continuum applications:
Dynamic fracture: Tearing of a membrane

Courtesy of Silling and collaborators, Sandia National Labs.
Continuum applications:
Interaction of 2 cracks: Peeling of a sheet

"Experimental data"

Courtesy of Silling and collaborators, Sandia National Labs.
Continuum applications: Cracking and fragmentation in glass

Courtesy of Silling and collaborators, Sandia National Labs.
Continuum applications:
Fragmentation of a concrete sphere

Courtesy of Silling and collaborators, Sandia National Labs.
Continuum applications:
Perforation of thin ductile targets

Courtesy of Silling and collaborators, Sandia National Labs.
Continuum applications:
Dynamic fracture in a balloon

Courtesy of Silling and collaborators, Sandia National Labs.
Modeling heterogeneous media using peridynamics

- Modeling fracture in homogeneous materials using peridynamics ✓.

Boeing is interested in fiber-reinforced materials. The length-scale of the fibers is very small relative to the structural length-scale. 'Impossible' to perform large scale simulations for the dynamics inside microstructured composites.

Homogenization and multiscale analysis.
Modeling heterogeneous media using peridynamics

- Modeling fracture in homogeneous materials using peridynamics ✔.

- What about composites (with microstructure)?
- Interested in modeling the dynamics inside heterogeneous materials using the peridynamic formulation.
- Boeing is interested in fiber-reinforced materials.
Modeling heterogeneous media using peridynamics

- Modeling fracture in homogeneous materials using peridynamics ✓.

- What about composites (with microstructure)?
- Interested in modeling the dynamics inside heterogeneous materials using the peridynamic formulation.
- Boeing is interested in fiber-reinforced materials.

- The length-scale of the fibers is very small relative to the structural length-scale.
- ‘Impossible’ to perform large scale simulations for the dynamics inside microstructured composites.
Modeling heterogeneous media using peridynamics

- Modeling fracture in homogeneous materials using peridynamics ✓.

- What about composites (with microstructure)?
- Interested in modeling the dynamics inside heterogeneous materials using the peridynamic formulation.
- Boeing is interested in fiber-reinforced materials.

- The length-scale of the fibers is very small relative to the structural length-scale.
- ‘Impossible’ to perform large scale simulations for the dynamics inside microstructured composites.

- Homogenization and multiscale analysis.
Multiscale analysis of fiber-reinforced materials using peridynamics

- The peridynamic equation for heterogeneous media (parameterized by ε).

$$\rho(x) \partial_t^2 u^\varepsilon(x, t) = \int_{H_x} f^\varepsilon (u^\varepsilon(x', t) - u^\varepsilon(x, t), x' - x, x) \, dx' + b^\varepsilon(x, t)$$

- Peridynamic models of fiber-reinforced materials.

1. A short-range bond force model.
2. A short-range + long-range bond force model.
3. A fluctuating long-range bond force model.
Fiber-reinforced materials

The peridynamic equation

- A unidirectional fiber-reinforced material.
- This material is periodic with period cell of side-length ε.

The peridynamic equation is given by

$$\rho(x) \partial_t^2 u^\varepsilon(x, t) = \int_{H_x} f^\varepsilon(u^\varepsilon(x', t) - u^\varepsilon(x, t), x' - x, x) \, dx' + b^\varepsilon(x, t), \quad (x, t) \in \Omega \times (0, T)$$

supplemented with initial data

$$u^\varepsilon(x, 0) = u_0^\varepsilon(x),$$
$$\partial_t u^\varepsilon(x, 0) = v_0^\varepsilon(x).$$
Linear peridynamics

The bond force is given by

\[f^\varepsilon(\eta^\varepsilon, \xi, x) = c^\varepsilon(x, x + \xi) \frac{\xi \otimes \xi}{|\xi|^3} \eta^\varepsilon, \quad \xi \in H_0 \]

where \(c^\varepsilon \) is a bounded real-valued function such that

- \(c^\varepsilon(x, x^\prime) = c^\varepsilon(x^\prime, x) \).
- \(c^\varepsilon(x, x^\prime) \) is \(\varepsilon \)-periodic in \(x \) and \(x^\prime \).
- The material properties are included in \(c^\varepsilon \).
- The three models are distinct in the way the coefficient \(c^\varepsilon \) and the neighborhood set \(H_0 \) are defined.

Notation

\[
\begin{align*}
\xi & = x^\prime - x, \\
\eta^\varepsilon & = u^\varepsilon(x^\prime, t) - u^\varepsilon(x, t).
\end{align*}
\]
Well-posedness of the peridynamic equation

\[
\begin{cases}
\partial_t^2 u^\varepsilon(x, t) = \int_{H_x} c^\varepsilon(x, x') \frac{(x' - x) \otimes (x' - x)}{|x' - x|^3} (u^\varepsilon(x', t) - u^\varepsilon(x, t)) \, dx' + b^\varepsilon(x, t) \\
u^\varepsilon(x, 0) = u_0^\varepsilon(x), \\
\partial_t u^\varepsilon(x, 0) = v_0^\varepsilon(x).
\end{cases}
\]

Existence and uniqueness

Let \(u_0^\varepsilon, v_0^\varepsilon \in L^p(\Omega)^3 \) and \(b^\varepsilon \in C([0, T]; L^p(\Omega)^3) \), where \(\frac{3}{2} < p \leq \infty \). Then \(u^\varepsilon \in C^2([0, T]; L^p(\Omega)^3) \) is the unique solution of the above peridynamic equation.
Multiscale analysis

\[
\begin{cases}
 \partial^2_t u^\varepsilon(x, t) = \int_{H_x} c^\varepsilon(x, x') \frac{(x' - x) \otimes (x' - x)}{|x' - x|^3} (u^\varepsilon(x', t) - u^\varepsilon(x, t)) dx' + b^\varepsilon(x, t) \\
 u^\varepsilon(x, 0) = u_0^\varepsilon(x), \\
 \partial_t u^\varepsilon(x, 0) = v_0^\varepsilon(x).
\end{cases}
\]

This \(\varepsilon \)-peridynamic equation is numerically very expensive.
Multiscale analysis

\[
\begin{aligned}
\partial_t^2 u^\varepsilon(x, t) &= \int_{H_x} c^\varepsilon(x, x') \frac{(x' - x) \otimes (x' - x)}{|x' - x|^3} (u^\varepsilon(x', t) - u^\varepsilon(x, t)) dx' + b^\varepsilon(x, t) \\
\begin{cases}
 u^\varepsilon(x, 0) &= u_0^\varepsilon(x), \\
 \partial_t u^\varepsilon(x, 0) &= v_0^\varepsilon(x).
\end{cases}
\end{aligned}
\]

This ε-peridynamic equation is numerically very expensive.

1. Homogenization
 The behavior of the averages of the solution u^ε in the limit as $\varepsilon \rightarrow 0$

\[
\begin{align*}
 u^\varepsilon &\rightarrow u^H \quad \text{(weakly)}
\end{align*}
\]
Multiscale analysis

\[
\begin{aligned}
\partial_t^2 u^\varepsilon(x, t) &= \int_{H_x} c^\varepsilon(x, x') \frac{(x' - x) \otimes (x' - x)}{|x' - x|^3} (u^\varepsilon(x', t) - u^\varepsilon(x, t)) dx' + b^\varepsilon(x, t) \\
\quad \begin{aligned}
u^\varepsilon(x, 0) &= u_0^\varepsilon(x), \\
\partial_t u^\varepsilon(x, 0) &= v_0^\varepsilon(x).
\end{aligned}
\end{aligned}
\]

This \(\varepsilon \)-peridynamic equation is numerically very expensive.

1. Homogenization
 The behavior of the averages of the solution \(u^\varepsilon \) in the limit as \(\varepsilon \to 0 \)
 \[u^\varepsilon \to u^H \text{ (weakly)} \]

2. Downscaling
 Find \(\hat{u}^\varepsilon \) such that
 \[u^\varepsilon - \hat{u}^\varepsilon \to 0 \text{ (strongly)} \]

 and \(\hat{u}^\varepsilon \) is cheaper to compute than \(u^\varepsilon \).
A short-range bond force model

For x and $x + \xi$ in Y, let

$$c(x, x + \xi) = \begin{cases}
C_f, & \text{if } x \text{ and } x + \xi \text{ are in the fiber phase} \\
C_m, & \text{if } x \text{ and } x + \xi \text{ are in the matrix phase} \\
C_i, & \text{otherwise.}
\end{cases}$$

Extend c periodically to \mathbb{R}^3. Then the bond force defined on Ω is given by

$$f_{\epsilon}(\eta_{\epsilon}, \xi, x) = \begin{cases}
1/\epsilon^2 c(x/\epsilon, (x + \xi)/\epsilon) \xi \otimes \xi |\xi|^3 \eta_{\epsilon}, & |\xi| \leq \epsilon \delta_0 \\
\text{otherwise.}
\end{cases}$$
A short-range bond force model

For \(x\) and \(x + \xi\) in \(Y\), let

\[
c(x, x + \xi) = \begin{cases}
 C_f, & \text{if } x \text{ and } x + \xi \text{ are in the fiber phase} \\
 C_m, & \text{if } x \text{ and } x + \xi \text{ are in the matrix phase} \\
 C_i, & \text{otherwise.}
\end{cases}
\]

Extend \(c\) periodically to \(\mathbb{R}^3\). Then the bond force defined on \(\Omega\) is given by

\[
f^\varepsilon(\eta^\varepsilon, \xi, x) = \begin{cases}
 \frac{1}{\varepsilon^2} c \left(\frac{x}{\varepsilon}, \frac{x + \xi}{\varepsilon} \right) \frac{\xi \otimes \xi}{|\xi|^3} \eta^\varepsilon, & |\xi| \leq \varepsilon \delta \\
 0, & \text{otherwise}
\end{cases}
\]
A short-range bond force model

The peridynamic equation

\[
\begin{aligned}
\partial_t^2 u^\varepsilon(x, t) &= \int_{H_{\varepsilon\delta}(0)} c^\varepsilon(x, x+\xi) \frac{\xi \otimes \xi}{|\xi|^3} (u^\varepsilon(x+\xi, t) - u^\varepsilon(x, t)) d\xi + h(x, t) + R(x/\varepsilon), \\
u^\varepsilon(x, 0) &= u_0(x) + u_1(x/\varepsilon), \\
\partial_t u^\varepsilon(x, 0) &= v_0(x) + v_1(x/\varepsilon).
\end{aligned}
\]

Here \(c^\varepsilon(x, x+\xi) = \frac{1}{\varepsilon^2} c(x/\varepsilon, (x + \xi)/\varepsilon) \).
A short-range bond force model

The peridynamic equation

\[
\begin{aligned}
\partial_t^2 u^\varepsilon(x, t) &= \int_{H_{\varepsilon\delta}(0)} c^\varepsilon(x, x+\xi) \frac{\xi \otimes \xi}{|\xi|^3} (u^\varepsilon(x+\xi, t) - u^\varepsilon(x, t)) d\xi + h(x, t) + R(x/\varepsilon), \\
&\quad \text{subject to:} \\
&u^\varepsilon(x, 0) = u_0(x) + u_1(x/\varepsilon), \\
&\partial_t u^\varepsilon(x, 0) = v_0(x) + v_1(x/\varepsilon).
\end{aligned}
\]

The homogenized equation

As \(\varepsilon \to 0 \),

\(u^\varepsilon \to u^H \) weakly in \(L^p(\Omega \times (0, T))^3 \),

where \(u^H \) solves

\[
\begin{aligned}
\partial_t^2 u^H(x, t) &= h(x, t), \\
u^H(x, 0) &= u_0(x), \\
\partial_t u^H(x, 0) &= v_0(x).
\end{aligned}
\]
A short-range bond force model

The peridynamic equation

\[
\begin{aligned}
\partial_t^2 u^\varepsilon(x, t) &= \int_{H^\varepsilon\delta(0)} c^\varepsilon(x, x+\xi) \frac{\xi \otimes \xi}{|\xi|^3} (u^\varepsilon(x+\xi, t) - u^\varepsilon(x, t)) d\xi + h(x, t) + R(x/\varepsilon), \\
u^\varepsilon(x, 0) &= u_0(x) + u_1(x/\varepsilon), \\
\partial_t u^\varepsilon(x, 0) &= v_0(x) + v_1(x/\varepsilon).
\end{aligned}
\]

Downscaling

Assume that \(h \in C([0, T]; C(\overline{\Omega})^3) \), and \(u_0 \) and \(v_0 \) are in \(C(\overline{\Omega})^3 \). Then for almost every \(t \in (0, T) \),

\[
\lim_{\varepsilon \to 0} \left\| u^\varepsilon(x, t) - (u^H(x, t) + r(x/\varepsilon, t)) \right\|_{L^p(\Omega)^3} = 0,
\]

where \(r \in C^2([0, T]; L^p_{per}(Y)^3) \) is the unique solution of

\[
\begin{aligned}
\partial_t^2 r(y, t) &= \int_{H_\delta(y)} c(y, y') \frac{(y' - y) \otimes (y' - y)}{|(y' - y)|^3} (r(y', t) - r(y, t)) \, dy' + R(y), \\
r(y, 0) &= u_1(y), \\
\partial_t r(y, 0) &= v_1(y).
\end{aligned}
\]
A short-range bond force model

The peridynamic equation

\[
\begin{cases}
\partial_t^2 u^\varepsilon(x, t) & = & \int_{H^\varepsilon\delta(0)} c^\varepsilon(x, x+\xi) \frac{\xi \otimes \xi}{|\xi|^3} (u^\varepsilon(x+\xi, t) - u^\varepsilon(x, t)) d\xi + h(x, t) + R(x/\varepsilon), \\
u^\varepsilon(x, 0) & = & u_0(x) + u_1(x/\varepsilon), \\
\partial_t u^\varepsilon(x, 0) & = & v_0(x) + v_1(x/\varepsilon).
\end{cases}
\]

Error estimate

Let \(t \in (0, T) \) and assume that \(u_0, v_0, \) and \(h(\cdot, t) \) are in \(C^{0,\beta}(\bar{\Omega})^3 \). Then

\[
\| u^\varepsilon(x, t) - (u^H(x, t) + r(x/\varepsilon, t)) \|_{L^p(\Omega)^3} \leq M(t)\varepsilon^\beta,
\]

where \(M(t) \) is independent of \(\varepsilon \).
A short-range bond force model

Can be shown, using two-scale convergence, that as \(\varepsilon \to 0 \),

\[
\int_{H_{\varepsilon \delta}(0)} c^{\varepsilon}(x, x+\xi) \frac{\xi \otimes \xi}{|\xi|^3} (u^{\varepsilon}(x+\xi, t) - u^{\varepsilon}(x, t)) d\xi \overset{\text{weak}}{\to}
\]

\[
\int_Y \int_{H_{\delta}(y)} c(y, y') \frac{(y' - y) \otimes (y' - y)}{|(y' - y)|^3} (r(y', t) - r(y, t)) \ dy' \ dy
\]

since \(f(\eta, y, y') = -f(-\eta, y', y) \)

\[
= - \int_Y \int_{H_{\delta}(y')} c(y', y) \frac{(y - y') \otimes (y - y')}{|(y - y')|^3} (r(y, t) - r(y', t))) \ dy \ dy'
\]

\[
= 0
\]
A short-range + long-range bond force model

\[f^\varepsilon(\eta^\varepsilon, \xi, x) = \frac{\chi(\xi) c^\varepsilon(x, x + \xi) \xi \otimes \xi}{|\xi|^3} \eta^\varepsilon \]
A short-range + long-range bond force model

\[f^\varepsilon(\eta^\varepsilon, \xi, x) = \left(\chi(\xi) \frac{c^\varepsilon(x, x + \xi)}{H_{\varepsilon\delta}(0)} + \chi(\xi) \frac{\lambda(\xi)}{H_{\gamma}(0)} \right) \frac{\xi \otimes \xi}{|\xi|^3} \eta^\varepsilon \]
A short-range + long-range bond force model

\[f^\varepsilon(\eta^\varepsilon, \xi, x) = \left(\chi(\xi) c^\varepsilon(x, x + \xi) + \chi(\xi) \lambda(\xi) \right) \frac{\xi \otimes \xi}{|\xi|^3} \eta^\varepsilon \]

where,

\[\lambda(\xi) = \begin{cases}
 C_M^f |\xi|, & \text{if } \xi \text{ is parallel to the fiber direction} \\
 C_M^m |\xi|, & \text{otherwise}
\end{cases} \]

and \(\gamma, C_M^f, C_M^m \) are macroscopic parameters.
A short-range + long-range bond force model

The peridynamic equation

\[
\begin{aligned}
\partial_t^2 u^\varepsilon(x, t) &= \int_{H_{\varepsilon\delta}(0)} c^\varepsilon(x, x+\xi) \frac{\xi \otimes \xi}{|\xi|^3} (u^\varepsilon(x+\xi, t) - u^\varepsilon(x, t)) d\xi \\
&\quad + \int_{H_{\gamma}(0)} \lambda(\xi) \frac{\xi \otimes \xi}{|\xi|^3} (u^\varepsilon(x+\xi, t) - u^\varepsilon(x, t)) d\xi + h(x, t) + R(x/\varepsilon), \\
\end{aligned}
\]

\[
\begin{aligned}
u^\varepsilon(x, 0) &= u_0(x) + u_1(x/\varepsilon), \\
\partial_t u^\varepsilon(x, 0) &= v_0(x) + v_1(x/\varepsilon).
\end{aligned}
\]
A short-range + long-range bond force model

The peridynamic equation

\[
\begin{aligned}
\partial_t^2 u^\varepsilon(x,t) &= \int_{H_\varepsilon(0)} c^\varepsilon(x,x+\xi) \frac{\xi \otimes \xi}{|\xi|^3} (u^\varepsilon(x+\xi,t) - u^\varepsilon(x,t)) d\xi \\
&+ \int_{H_\gamma(0)} \lambda(\xi) \frac{\xi \otimes \xi}{|\xi|^3} (u^\varepsilon(x+\xi,t) - u^\varepsilon(x,t)) d\xi + h(x,t) + R(x/\varepsilon),
\end{aligned}
\]

\[u^\varepsilon(x,0) = u_0(x) + u_1(x/\varepsilon), \quad \partial_t u^\varepsilon(x,0) = v_0(x) + v_1(x/\varepsilon).\]

The homogenized equation

As \(\varepsilon \to 0\),

\[u^\varepsilon \to u^H \text{ weakly in } L^p(\Omega \times (0,T))^3,\]

where \(u^H\) solves

\[
\begin{aligned}
\partial_t^2 u^H(x,t) &= \int_{H_\gamma(0)} \lambda(\xi) \frac{\xi \otimes \xi}{|\xi|^3} (u^H(x+\xi,t) - u^H(x,t)) d\xi + h(x,t), \\
u^H(x,0) &= u_0(x), \quad \partial_t u^H(x,0) = v_0(x).
\end{aligned}
\]
A short-range + long-range bond force model

The peridynamic equation

\[
\begin{cases}
\partial_t^2 u^\varepsilon(x, t) = \int_{H_{\varepsilon\delta}(0)} c^\varepsilon(x, x+\zeta) \frac{\xi \otimes \xi}{|\xi|^3} \left(u^\varepsilon(x+\zeta, t) - u^\varepsilon(x, t) \right) d\zeta \\
\quad + \int_{H_{\gamma}(0)} \lambda(\zeta) \frac{\xi \otimes \xi}{|\xi|^3} \left(u^\varepsilon(x+\zeta, t) - u^\varepsilon(x, t) \right) d\zeta + h(x, t) + R(x/\varepsilon), \\
\quad u^\varepsilon(x, 0) = u_0(x) + u_1(x/\varepsilon), \quad \partial_t u^\varepsilon(x, 0) = v_0(x) + v_1(x/\varepsilon).
\end{cases}
\]

Downscaling

\[
\lim_{\varepsilon \to 0} \left\| u^\varepsilon(x, t) - \left(u^H(x, t) + r(x/\varepsilon, t) \right) \right\|_{L_p(\Omega)^3} = 0,
\]

where \(r \in C^2([0, T]; L_p^{\text{per}}(Y)^3) \) is the unique solution of

\[
\begin{cases}
\partial_t^2 r(y, t) = \int_{H_{\delta}(y)} c(y, y') \frac{(y' - y) \otimes (y' - y)}{|(y' - y)|^3} \left(r(y', t) - r(y, t) \right) dy' \\
\quad - \int_{H_{\gamma}(0)} \lambda(\xi) \frac{\xi \otimes \xi}{|\xi|^3} d\xi \ r(y, t) + R(y), \\
\quad r(y, 0) = u_1(y), \quad \partial_t r(y, 0) = v_1(y).
\end{cases}
\]
A fluctuating long-range bond force model

The bond force is given by

\[f^\epsilon(\eta^\epsilon, \xi, x) = \begin{cases}
 c^\epsilon(x, x + \xi) \frac{\xi \otimes \xi}{|\xi|^3} \eta^\epsilon, & |\xi| \leq \delta \\
 0, & \text{otherwise.}
\end{cases} \]
A fluctuating long-range bond force model

The bond force is given by

\[f_{\varepsilon}^{\varepsilon}(\eta^{\varepsilon}, \xi, x) = \begin{cases}
 c_{\varepsilon}^{\varepsilon}(x, x + \xi) \frac{\xi \otimes \xi}{|\xi|^3} \eta^{\varepsilon}, & |\xi| \leq \delta \\
 0, & \text{otherwise.}
\end{cases} \]

where \(c_{\varepsilon} \) is \(\varepsilon Y \)-periodic and given by

\[c_{\varepsilon}^{\varepsilon}(x, x + \xi) = \begin{cases}
 C_{f}|\xi|, & \text{if } x \text{ and } x + \xi \text{ are in the fiber phase,} \\
 \varepsilon C_{m}|\xi|, & \text{and } \xi \text{ is parallel to the fiber direction,} \\
 0, & \text{otherwise.}
\end{cases} \]
A fluctuating long-range bond force model

The peridynamic initial value problem
(second-order ACP in $L^p(\Omega)^3$, $1 \leq p < \infty$)

\[
\begin{aligned}
\ddot{u}\varepsilon(t) &= A\varepsilon u\varepsilon(t), \quad t \in [0, T] \\
u\varepsilon(0) &= u^0, \\
\dot{u}\varepsilon(0) &= v^0.
\end{aligned}
\]

For $v \in L^p(\Omega)^3$,

\[
A\varepsilon = \chi_f\varepsilon A_f + \varepsilon(A_m - C_m/C_f\chi_f\varepsilon A_f)
\]

\[
A_m v(x) = C_m \int_{H_\delta(0)} \frac{\xi \otimes \xi}{|\xi|^2} (v(x + \xi) - v(x))d\xi
\]

\[
A_f v(x) = C_f \int_{I_\delta(0)} \frac{\xi \otimes \xi}{|\xi|^2} (v(x + \xi) - v(x))d\xi
\]

Here $\chi_f(x) = \chi_f(x/\varepsilon)$.

The homogenized equation

For $t \in (0, T)$ and as $\varepsilon \to 0$,

\[
u\varepsilon(t) \to u^H(t)
\]

weakly in $L^p(\Omega)^3$,

where u^H solves

\[
\begin{aligned}
\ddot{u}^H(t) &= A_f u^H(t) + h(t), \quad t \in [0, T] \\
u^H(0) &= u^0, \\
\dot{u}^H(0) &= v^0.
\end{aligned}
\]

and $h(t) = (\theta_f - 1)A_f(u_0 + tv_0)$.

Trotter
A fluctuating long-range bond force model

The peridynamic initial value problem
(second-order ACP in $L^p(\Omega)^3, 1 \leq p < \infty$)

\[
\begin{cases}
\ddot{u}^\varepsilon(t) = A^\varepsilon u^\varepsilon(t), & t \in [0, T] \\
u^\varepsilon(0) = u^0, \\
\dot{u}^\varepsilon(0) = v^0.
\end{cases}
\]

The homogenized equation

For $t \in (0, T)$ and as $\varepsilon \to 0$,

\[u^\varepsilon(t) \to u^H(t) \text{ weakly in } L^p(\Omega)^3,
\]

where u^H solves

\[
\begin{cases}
\ddot{u}^H(t) = A_f u^H(t) + h(t), & t \in [0, T] \\
u^H(0) = u^0, \\
\dot{u}^H(0) = v^0.
\end{cases}
\]

and

\[h(t) = (\theta_f - 1)A_f(u^0 + tv^0).
\]
A fluctuating long-range bond force model

The peridynamic initial value problem
(second-order ACP in $L^p(\Omega)^3$, $1 \leq p < \infty$)

\[
\begin{align*}
\ddot{u}^\varepsilon(t) &= A^\varepsilon u^\varepsilon(t), \quad t \in [0, T] \\
 u^\varepsilon(0) &= u^0, \\
 \dot{u}^\varepsilon(0) &= \nu^0.
\end{align*}
\]

The homogenized equation

For $t \in (0, T)$ and as $\varepsilon \rightarrow 0$,

\[u^\varepsilon(t) \rightarrow u^H(t) \text{ weakly in } L^p(\Omega)^3,\]

where u^H solves

\[
\begin{align*}
\ddot{u}^H(t) &= A_f u^H(t) + h(t), \quad t \in [0, T] \\
 u^H(0) &= u^0, \\
 \dot{u}^H(0) &= \nu^0.
\end{align*}
\]

and

\[h(t) = (\theta_f - 1) A_f (u^0 + t\nu^0).\]
Trotter-Kato Theorem and weak convergence of generators of semigroups

\[u^\varepsilon(t) = \sum_{n=0}^{\infty} \frac{t^{2n}}{(2n)!} (A^\varepsilon)^n u^0 + \sum_{n=0}^{\infty} \frac{t^{2n+1}}{(2n+1)!} (A^\varepsilon)^n v^0 \]
Trotter-Kato Theorem and weak convergence of generators of semigroups

For $n = 1,2,3,\ldots$, as $\varepsilon \to 0$,

$$(A^\varepsilon)^n v \to \theta_f(A_f)^n v \text{ weakly in } L^p(\Omega)^3.$$

$$u^\varepsilon(t) = \sum_{n=0}^{\infty} \frac{t^{2n}}{(2n)!} (A^\varepsilon)^n u^0 + \sum_{n=0}^{\infty} \frac{t^{2n+1}}{(2n+1)!} (A^\varepsilon)^n v^0$$
Trotter-Kato Theorem and weak convergence of generators of semigroups

For \(n = 1, 2, 3, \ldots \), as \(\varepsilon \to 0 \),

\[(A^\varepsilon)^n v \to \theta_f(A_f)^n v \text{ weakly in } L^p(\Omega)^3.\]

\[
u^\varepsilon(t) = u^0 + tv^0 + \sum_{n=1}^\infty \frac{t^{2n}}{(2n)!} (A^\varepsilon)^n u^0 + \sum_{n=1}^\infty \frac{t^{2n+1}}{(2n+1)!} (A^\varepsilon)^n v^0\]
Trotter-Kato Theorem and weak convergence of generators of semigroups

For \(n = 1, 2, 3, \ldots \), as \(\varepsilon \to 0 \),

\[
(A^\varepsilon)^n v \to \theta_f(A_f)^n v \text{ weakly in } L^p(\Omega)^3.
\]

\[
\begin{align*}
\varepsilon(t) &= u^0 + tv^0 + \sum_{n=1}^{\infty} \frac{t^{2n}}{(2n)!} (A^\varepsilon)^n u^0 + \sum_{n=1}^{\infty} \frac{t^{2n+1}}{(2n + 1)!} (A^\varepsilon)^n v^0 \\
\to u^0 + tv^0 + \theta_f \sum_{n=1}^{\infty} \frac{t^{2n}}{(2n)!} (A_f)^n u^0 + \theta_f \sum_{n=1}^{\infty} \frac{t^{2n+1}}{(2n + 1)!} (A_f)^n v^0 \\
&:= u^H(t).
\end{align*}
\]
Trotter-Kato Theorem and weak convergence of generators of semigroups

For $n = 1, 2, 3, \ldots$, as $\varepsilon \to 0$,

$$(A^\varepsilon)^n v \to \theta_f (A_f)^n v \text{ weakly in } L^p(\Omega)^3.$$
Trotter-Kato Theorem and weak convergence of generators of semigroups

For \(n = 1, 2, 3, \ldots \), as \(\varepsilon \to 0 \),

\[(A^\varepsilon)^n v \to \theta_f (A_f)^n v \text{ weakly in } L^p(\Omega)^3.\]

\[u^\varepsilon(t) = u^0 + tv^0 + \sum_{n=1}^\infty \frac{t^{2n}}{(2n)!} (A^\varepsilon)^n u^0 + \sum_{n=1}^\infty \frac{t^{2n+1}}{(2n+1)!} (A^\varepsilon)^n v^0\]

\[\text{weak} \quad \to \quad u^0 + tv^0 + \theta_f \sum_{n=1}^\infty \frac{t^{2n}}{(2n)!} (A_f)^n u^0 + \theta_f \sum_{n=1}^\infty \frac{t^{2n+1}}{(2n+1)!} (A_f)^n v^0\]

\[:= u^H(t).\]

\[\ddot{u}^H(t) = \theta_f \sum_{n=0}^\infty \frac{t^{2n}}{(2n)!} (A_f)^{n+1} u^0 + \theta_f \sum_{n=0}^\infty \frac{t^{2n+1}}{(2n+1)!} (A_f)^{n+1} v^0\]

\[= \theta_f A_f (u^0 + tv^0) + A_f \left(\theta_f \sum_{n=1}^\infty \frac{t^{2n}}{(2n)!} (A_f)^n u^0 + \theta_f \sum_{n=1}^\infty \frac{t^{2n+1}}{(2n+1)!} (A_f)^n v^0 \right)\]
Trotter-Kato Theorem and weak convergence of generators of semigroups

For \(n = 1, 2, 3, \ldots \), as \(\varepsilon \to 0 \),

\[
(A^\varepsilon)^n v \to \theta_f (A_f)^n v \quad \text{weakly in } L^p(\Omega)^3.
\]

\[
u^\varepsilon(t) = u^0 + tv^0 + \sum_{n=1}^{\infty} \frac{t^{2n}}{(2n)!} (A^\varepsilon)^n u^0 + \sum_{n=1}^{\infty} \frac{t^{2n+1}}{(2n + 1)!} (A^\varepsilon)^n v^0
\]

weakly

\[
u^0 + tv^0 + \theta_f \sum_{n=1}^{\infty} \frac{t^{2n}}{(2n)!} (A_f)^n u^0 + \theta_f \sum_{n=1}^{\infty} \frac{t^{2n+1}}{(2n + 1)!} (A_f)^n v^0
\]

:= \(u^H(t) \).

\[
\ddot{u}^H(t) = \theta_f \sum_{n=0}^{\infty} \frac{t^{2n}}{(2n)!} (A_f)^{n+1} u^0 + \theta_f \sum_{n=0}^{\infty} \frac{t^{2n+1}}{(2n + 1)!} (A_f)^{n+1} v^0
\]

\[
= \theta_f A_f (u^0 + tv^0) + A_f \left(\theta_f \sum_{n=1}^{\infty} \frac{t^{2n}}{(2n)!} (A_f)^n u^0 + \theta_f \sum_{n=1}^{\infty} \frac{t^{2n+1}}{(2n + 1)!} (A_f)^n v^0 \right)
\]

\[
= \theta_f A_f (u^0 + tv^0) + A_f (u^H(t) - (u^0 + tv^0))
\]
Trotter-Kato Theorem and weak convergence of generators of semigroups

For \(n = 1, 2, 3, \ldots \), as \(\varepsilon \to 0 \),

\[
(A^\varepsilon)^n v \to \theta_f(A_f)^n v \text{ weakly in } L^p(\Omega)^3.
\]

\[
\begin{align*}
\varepsilon(t) &= u^0 + tv^0 + \sum_{n=1}^{\infty} \frac{t^{2n}}{(2n)!} (A^\varepsilon)^n u^0 + \sum_{n=1}^{\infty} \frac{t^{2n+1}}{(2n+1)!} (A^\varepsilon)^n v^0 \\
\to &= u^0 + tv^0 + \theta_f \sum_{n=1}^{\infty} \frac{t^{2n}}{(2n)!} (A_f)^n u^0 + \theta_f \sum_{n=1}^{\infty} \frac{t^{2n+1}}{(2n+1)!} (A_f)^n v^0 \\
&:= u^H(t).
\end{align*}
\]

\[
\begin{align*}
\ddot{u}^H(t) &= \theta_f \sum_{n=0}^{\infty} \frac{t^{2n}}{(2n)!} (A_f)^{n+1} u^0 + \theta_f \sum_{n=0}^{\infty} \frac{t^{2n+1}}{(2n+1)!} (A_f)^{n+1} v^0 \\
&= \theta_f A_f(u^0 + tv^0) + A_f \left(\theta_f \sum_{n=1}^{\infty} \frac{t^{2n}}{(2n)!} (A_f)^n u^0 + \theta_f \sum_{n=1}^{\infty} \frac{t^{2n+1}}{(2n+1)!} (A_f)^n v^0 \right) \\
&= A_f u^H(t) + (\theta_f - 1) A_f(u^0 + tv^0)
\end{align*}
\]
Future Work

- Numerical simulations.

- Multiscale analysis for nonlinear peridynamics.
Thank You