Math 5110: Homework Assignment 3 Due September 12, 2017

1. Consider a discrete-time model of the concentration of medication in the bloodstream, M_t ,

$$M_{t+1} = M_t - f(M_t)M_t + S,$$

where $f(M_t)$ is the fraction absorbed and S is the daily dosage. Suppose that

$$f(M) = \frac{M^n}{K^n + M^n}.$$

Set K = 2 and S = 1. Show that the equilibrium level is $M^* = 2$ for any value of n. For which values of n will solutions oscillate toward the equilibrium? Are there any values of n for which the equilibrium is unstable? Sketch a cobweb diagram of an illuminating case.

2. Suppose a cancer is growing according to

$$C_{t+1} = (m\sigma + p)C_t$$

where p is the decreasing function of C_t

$$p(C) = \frac{C}{1 + C^2}.$$

Suppose that m=2 because cells are dividing. We will study how the behavior depends on the value of σ .

- **a.** Graph $m\sigma + p(C)$ as a function of C for $\sigma = 1/8, 1/4, 1/2$ and 3/4. Can you tell when the cancer will grow?
- **b.** Draw cobweb diagrams for each of these values of σ .
- **c.** What are the stable and unstable equilibria in each case?
- **d.** Draw the bifurcation diagram. What happens at $\sigma = 1/2$? Is something wrong with the model?
- 3. Newton's method for numerically solving equations can be formalized as a discrete-time dynamical system. For example, to find a numerical value of $\sqrt{3}$, we must solve $x^2 = 3$. Think of this as solving the equation f(x) = 0 where $f(x) = x^2 3$. Newton's method consists of picking a guess (like $x_0 = 2$), and replacing the equation f(x) = 0 with the linear equation $\hat{f}(x) = 0$ where $\hat{f}(x)$ is the tangent line to f(x) at the first guess x_0 .
 - **a.** Graph f(x) and $\hat{f}(x)$ at the guess $x_0 = 2$.
 - **b.** Solve $\hat{f}(x)$ to find x_1 .
 - **c.** Find the tangent line at x_1 , and use it to find the next guess x_2 .
 - **d.** Write down the discrete-time dynamical system that gets from one guess to the next. Graph the updating function.
 - e. Find the equilibrium and its stability.
 - **f.** Newton's method converges to the correct solution with astonishing speed. Do you have any idea why?