Math 5110: Homework Assignment 10 Due November 14, 2017

- 1. The Poisson distribution can be thought of as the result of an immigration process. A population of size i increases to i + 1 at rate λ (not per capita).
 - **a.** How does this differ from a birth process where each individual gives birth at rate λ ?
 - **b.** Write the system of differential equations describing this process.
 - **c.** Find the mean as a function of time.
 - **d.** Find the formula giving the probability of i individuals at time t.
- 2. Suppose each individual in a population gives birth to twins (thus increasing the population by 2) at rate λ and dies at rate μ . Find the probability of extinction starting from a population of size i. How does it compare with the result when individuals give birth to a single offspring?
- 3. Consider a population of fixed size K distributed on two islands. Each individual on island 1 migrates to island 2 independently at probabilistic rate μ_1 while each individual on island 2 migrates to island 1 independently at probabilistic rate μ_2 .
 - **a.** Draw a diagram illustrating the process.
 - **b.** Write the differential equations for the probabilities.
 - **c.** Suppose K = 2. Find the equilibrium probabilities for p_0 , p_1 and p_2 . Take a guess at the equilibrium probabilities for general K.