Math and Medicine: Homework Assignment 3 Due on Sept 15

1. Suppose everybody infects k other people with the probability

$$
p_{k}=\frac{\Lambda^{k} e^{-\Lambda}}{k!}
$$

according the Poisson distribution with parameter Λ.
a. Write the equation for Q_{1}, the probability an epidemic dies out starting from a single individual.
b. Suppose that $\Lambda=1.1$. Show that R_{0} (the mean number of people infected per person) is also equal to 1.1.
c. By hook or crook, find Q_{1} in this case.
d. Extra credit: Try this for a whole range of values of Λ.
2. Find the programs ebolasim.R and ebolaloop.R on the course web site. The first simulates the process of disease spread just once, and the second loops over it many times.
a. Change the values of R_{0}, R_{c} and k to interesting values, run ebolasim.R a few times, and look at the output edat. Make an interesting observation.
b. Run ebolaloop.R for at least two values of the parameters. How do your results compare with those in the paper?
c. Extra credit: Change the program to model the immediate control scenario and see if the results line up with those in the paper.

