Math and Medicine: Homework Assignment 2 Due on Sept 8

1. Draw the UPGMA tree for the alternative data

	den	lc1	lc5	ptb	ptc	ptd
den	0	71	38	25	16	45
lc1	71	0	95	58	73	85
lc5	38	95	0	30	44	37
ptb	25	58	30	0	21	43
ptc	16	73	44	21	0	44
ptd	45	85	37	43	44	0

Would the interpretation differ from the case we studied in class?

2. People often approximate the number of genetic changes between individuals with the **Poisson distribution**. With this distribution, we observe k differences with probability

$$\Pr(k|\Lambda) = \frac{\Lambda^k e^{-\Lambda}}{k!}$$

where Λ is the unknown parameter.

- **a.** Suppose k = 10. Find the likelihood function, the log likelihood (or support) as functions of Λ , and the maximum likelihood estimator of Λ .
- **b.** Suppose we have the same data as in class, where D is the dentist, P is the patient, and C is the control.

Sample 1	Sample 2	Number of differences
D	Р	$k_{DP} = 15$
D	\mathbf{C}	$k_{DC} = 38$
Р	\mathbf{C}	$k_{BC} = 39$

Assume that the number of differences follows a Poisson distribution, and find the likelihood functions for the three possible phylogenetic trees (the idea is that there will be two values of Λ , one for the pair that is the closest, and one for the other two pairs that are far apart). Find the maximum likelihood in each case. Is the pairing of D with P is the best supported model?