Math and Medicine: Homework Assignment 4
 Answers

1. Suppose people enter a simple transplant waiting list (all people are ranked equally) at rate $\lambda=10.0 /$ year, organs become available at rate $\sigma=20.0 /$ year, and people die at rate $\mu=0.05 /$ year.
a.

$$
\begin{aligned}
q_{1} & =\frac{\lambda}{\sigma+\mu} q_{0} \\
q_{2} & =\frac{\lambda}{\sigma+2 \mu} q_{1}=\left(\frac{\lambda}{\sigma+\mu}\right)\left(\frac{\lambda}{\sigma+2 \mu}\right) q_{0} \\
q_{3} & =\frac{\lambda}{\sigma+3 \mu} q_{2}=\left(\frac{\lambda}{\sigma+\mu}\right)\left(\frac{\lambda}{\sigma+2 \mu}\right)\left(\frac{\lambda}{\sigma+3 \mu}\right) q_{0} .
\end{aligned}
$$

And so forth.
b. With the given parameter values, I got

$$
\begin{aligned}
& q_{1}=0.4987 q_{0}, q_{2}=0.2481 q_{0}, q_{3}=0.1231 q_{0}, q_{4}=0.0609 q_{0}, q_{5}=0.0301 q_{0} \\
& q_{6}=0.0148 q_{0}, q_{7}=0.0073 q_{0}, q_{8}=0.0035 q_{0}, q_{9}=0.0017 q_{0}, q_{10}=0.0008 q_{0}
\end{aligned}
$$

This seemed small enough to me. Adding these up, gives

$$
1=q_{0}+0.9894 q_{0}
$$

so $q_{0}=0.503$. The list will be empty about half the time.
c. If there is just one person on the list, the probability of dying is $\delta_{1}=\mu /(\sigma+\mu)$. With two people, the probability is $\delta_{2}=\mu /(\sigma / 2+\mu)$ because you have only half a chance of getting the organ. Continuing in this way, we find $\delta_{i}=\mu /(\sigma / i+\mu)$. If we multiply these probabilities by the q_{i} 's (but divided by $1-q_{0}$ because we are assuming somebody is on the list), we get

$$
\frac{\sum \delta_{i} q_{i}}{1-q_{0}}=0.0049
$$

Less than 0.5% of people should die on the list, thanks to the low death rate and the high donation rate.
d. An organ is wasted if it appears while the list is empty, which is roughly half the time. The price for the low death rate is many wasted organs.
2. My probabilities came out really close, with the simulated $q_{0}=0.502$. Also, out of 519 people, not a single one died the first time, and only one died out of 492 the next time. This seems a bit lower than the calculated value. But when I ran it with over 5000 patients (by setting tmax to be 500 , the probability of death was 0.0051 .
3. I found only one cycle of length 2 (P6 and P9), and only one cycle of length 3 (P6, P7 and P9). The longest chain seems to be length 8: P7, P9, P6, P10, P4, P5, P2, P3.

