Math and Medicine: Homework Assignment 2 Answers

1. Answer: To find the tree, we follow the UPGMA algorithm.

ſ		lc1 lc		5]	ptb	ptd	denptc	
	lc1	0	9	5	58	85.0	72.0	1
	lc5	95	0)	39	37.0	41.0	
	ptb	58	3	9	0	43.0	23.0	
	ptd	85	3	7	43	0.0	44.5	
	denptc	72		1	23	44.5	0.0	
lc1 lc5					p	td	ptbdenpt	с
	lc1		0	95	85	.00	65.00	
lc5		5	95	0	37.00		40.00	
ptd		d	85 3		0.00		43.75	
	ptbdenpt	с	65	40	43.75		0.00	
	lc1			p	tbde	enptc	lc5ptd	
	lc1 (0	65.000		90.000		
	ptbdenptc		65		0.000		41.875	
	lc5ptd 90			41.875		0.000		
				lc	1]	ptbde	nptclc5pt	d
lc1				0		77.5		
ptbdenptclc5ptd				77.	.5		0	

Now the controls do not cluster together (lc1 is off on its own), making it less clear that the dentist and the patients form a separate group from the controls.

2. Answer:

a.

$$L(\Lambda) = \Pr(10|\Lambda) = \frac{\Lambda^{10}e^{-\Lambda}}{10!}$$

$$S(\Lambda) = \ln(L(\Lambda)) = 10\ln(\Lambda) - \Lambda - \ln(10!)$$

$$\frac{dS}{d\Lambda} = \frac{10}{\Lambda} - 1$$

This has a maximum at $\Lambda = 10$ where it switches from increasing (positive derivative) to decreasing (negative derivative).

b. If D and P are closest, the likelihood function is

$$L_{DP}(\Lambda_1, \Lambda_2) = \frac{\Lambda_1^{15} e^{-\Lambda_1}}{15!} + \frac{\Lambda_2^{38} e^{-\Lambda_2}}{38!} + \frac{\Lambda_2^{39} e^{-\Lambda_2}}{39!}$$
$$S_{DP}(\Lambda_1, \Lambda_2) = 15 \ln(\Lambda_1) - \Lambda_1 + 77 \ln(\Lambda_2) - 2\Lambda_2 - H$$

Here H is some huge constant with logs and factorials that is the same for all the models, and which disappears when we take the derivative. This will have a maximum where $\Lambda_1 = 15$ and $\Lambda_2 = 38.5$. We can find S_{DC} in the same way, with $\Lambda_1 = 38$ and $\Lambda_2 = 27$, and similarly, S_{PC} has $\Lambda_1 = 39$ and $\Lambda_2 = 26.5$. Then (this ignores H, which would subtract 237.50 from each of these values),

$$S_{DP}(15, 38.5) = 229.72$$

$$S_{DC}(38, 27) = 224.20$$

$$S_{DP}(39, 26.5) = 224.57$$

The model with D and P closest is still the best.