Math and Medicine: Homework Assignment 2

Answers

1. Answer: To find the tree, we follow the UPGMA algorithm.

	lc1	lc5	ptb	ptd	denptc
lc1	0	95	58	85.0	72.0
lc5	95	0	39	37.0	41.0
ptb	58	39	0	43.0	23.0
ptd	85	37	43	0.0	44.5
denptc	72	41	23	44.5	0.0

	lc1	lc5	ptd	ptbdenptc
lc1	0	95	85.00	65.00
lc5	95	0	37.00	40.00
ptd	85	37	0.00	43.75
ptbdenptc	65	40	43.75	0.00

	lc1	ptbdenptc	lc5ptd
lc1	0	65.000	90.000
ptbdenptc	65	0.000	41.875
lc5ptd	90	41.875	0.000

	lc1	ptbdenptclc5ptd
lc1	0	77.5
ptbdenptclc5ptd	77.5	0

Now the controls do not cluster together (lc1 is off on its own), making it less clear that the dentist and the patients form a separate group from the controls.

2. Answer:

a.

$$
\begin{aligned}
L(\Lambda) & =\operatorname{Pr}(10 \mid \Lambda)=\frac{\Lambda^{10} e^{-\Lambda}}{10!} \\
S(\Lambda) & =\ln (L(\Lambda))=10 \ln (\Lambda)-\Lambda-\ln (10!) \\
\frac{d S}{d \Lambda} & =\frac{10}{\Lambda}-1
\end{aligned}
$$

This has a maximum at $\Lambda=10$ where it switches from increasing (positive derivative) to decreasing (negative derivative).
b. If D and P are closest, the likelihood function is

$$
\begin{aligned}
L_{D P}\left(\Lambda_{1}, \Lambda_{2}\right) & =\frac{\Lambda_{1}^{15} e^{-\Lambda_{1}}}{15!}+\frac{\Lambda_{2}^{38} e^{-\Lambda_{2}}}{38!}+\frac{\Lambda_{2}^{39} e^{-\Lambda_{2}}}{39!} \\
S_{D P}\left(\Lambda_{1}, \Lambda_{2}\right) & =15 \ln \left(\Lambda_{1}\right)-\Lambda_{1}+77 \ln \left(\Lambda_{2}\right)-2 \Lambda_{2}-H
\end{aligned}
$$

Here H is some huge constant with logs and factorials that is the same for all the models, and which disappears when we take the derivative. This will have a maximum where $\Lambda_{1}=15$ and $\Lambda_{2}=38.5$. We can find $S_{D C}$ in the same way, with $\Lambda_{1}=38$ and $\Lambda_{2}=27$, and similarly, $S_{P C}$ has $\Lambda_{1}=39$ and $\Lambda_{2}=26.5$. Then (this ignores H, which would subtract 237.50 from each of these values),

$$
\begin{aligned}
S_{D P}(15,38.5) & =229.72 \\
S_{D C}(38,27) & =224.20 \\
S_{D P}(39,26.5) & =224.57
\end{aligned}
$$

The model with D and P closest is still the best.

