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Chapter 1

Vectors

When we measure several values simultaneously, we can store them as a list of numbers, or a vector.
Like many objects in mathematics, vectors have a whole set of algebraic and geometric properties,
and are among the most widely useful tools in mathematics. We used vectors in a simplified form
as direction arrows in Chapter 5, and begin their study from the geometric viewpoint, then in
dynamical systems, and finally in the context of probability and Markov chains.

1.1 Introduction to vectors

A vector is the mathematical version of an arrow. An arrow is described by three things: where it
starts, how far it goes horizontally, and how far it goes vertically. The vector labeled ~v in figure 1.1.1
starts at (1, 3) (called the base point) and goes across 2 and up 1. The 2 is called the horizontal
component and the 1 is the vertical component. We write

~v = (2, 1).

The arrow over v indicates that v is a vector. For most applications, the starting point (1, 3) is not
mentioned explicitly. Vectors with positive horizontal components (~w and ~v in figure 1.1.1) point
to the right while those with negative horizontal components (~u) point to the left. Vectors with
positive vertical components (~v) point up and those with negative vertical components (~w and ~u)
point down.

Vectors can be added together and multiplied by constants. Vectors are added component by
component. We add ~v = (2, 1) and ~w = (3,−2) as

~v + ~w = (2 + 3, 1− 2) = (5,−1).

This corresponds to a geometric rule. To find the sum of ~v and ~w on a graph, complete the
parallelogram and draw the diagonal, as shown in figure 1.1.2.

Vectors can be multiplied by numbers (called scalars in this context) component by component.
For example, we multiply ~v by 3 as

3~v = (3× 2, 3× 1) = (6, 3).

The base point and direction remain the same. The vector 3~v now points from (1, 3) to (1+6, 3+3) =
(7, 6).
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Figure 1.1.1: Examples of vectors
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Figure 1.1.2: Adding vectors
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Figure 1.2.1: Some phase plane vectors for the predator-prey system
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1.2 Phase plane vectors

Consider the system of differential equations for the predator-prey system from Chapter 5. With
the parameter values λ = δ = 1.0 and e = h = 0.001, the equations are

db

dt
= (1.0− 0.001p)b

dp

dt
= (−1.0 + 0.001b)p.

We found direction arrows by checking the signs of the rates of change in the regions defined by
the nullclines.

We can convert direction arrows into phase plane vectors with horizontal component equal
to the rate of change of b and vertical component equal to the rate of change of p starting from the
point (b, p).

At the point b = 500 and p = 500 in the phase plane, we compute the rates of change by from
the differential equations, finding

db

dt
= (1.0− 0.001 · 500)500 = 250

dp

dt
= (−1.0 + 0.001 · 500)500 = −250.

These components correspond to the vector (250,−250) starting at the point (500, 500) in the phase
plane (figure 1.2.1). Like the direction arrow in this region, this vector points down and to the
right.
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What happens to phase plane vectors on the nullclines or at an equilibrium? When p = 1000,
we are on the b-nullcline. Suppose we would like to draw the phase plane vector at (250, 1000). We
find

db

dt
= (1.0− 0.001 · 1000)750 = 0

dp

dt
= (−1.0 + 0.001 · 750)1000 = −250.

The phase plane vector points straight down. The horizontal component, indicating how b is
changing, is zero. This is consistent with the fact that this point is on the b-nullcline.

The point (1000, 250) lies on the p-nullcline. We find

db

dt
= (1.0− 0.001 · 250)1000 = 750

dp

dt
= (−1.0 + 0.001 · 1000)500 = 0.

This phase plane vector points straight to the right. The vertical component is zero, meaning that
p is not changing. Finally, at the equilibrium (1000, 1000),

db

dt
= (1.0− 0.001 · 1000)1000 = 0

dp

dt
= (−1.0 + 0.001 · 1000)1000 = 0.

Both components of the phase plane vector are zero, indicating that this point is an equilibrium.
The phase plane vector has zero length.

1.3 Vectors and trigonometry

Instead of thinking of vectors in terms of their horizontal and vertical components, it is often
useful to think instead about their magnitude and direction. We convert between these two
viewpoints with trigonometry.

There are four numbers associated with every vector: the horizontal component x, the vertical
component y, the length r and the angle θ it makes with the horizontal (figure 1.3.1). Trigonometric
functions express the relationships among these four numbers, with the basic facts

x = r cos(θ)

y = r sin(θ).

These equations are effectively the definitions of cosine and sine. By solving for the cosine,

cos(θ) =
x

r
.

This is the “adjacent over hypotenuse” definition used in trigonometry classes. Similarly, the
vertical component y is the product of the length with the sine of the angle. By solving for the
sine,

sin(θ) =
y

r
,
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Figure 1.3.1: Trigonometry and vectors
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the “opposite over hypotenuse” definition of trigonometry.
The other trigonometric function useful for analyzing vectors is the tangent, defined by

tan(θ) =
sin(θ)

cos(θ)
.

From the definition,

tan(θ) =
y/r

x/r
=
y

x
.

The tangent is the “opposite over the adjacent”.
Suppose that r = 5.0 and θ = π/3. The horizontal and vertical components x and y are

x = 5 cos(π/3) = 2.5

y = 5 sin(π/3) = 5

√
3

2
= 4.33.

The signs of the components depend on the angle. The horizontal component is positive when θ is
between −π/2 and π/2 and the vertical component is positive when θ is between 0 and π.

Many vectors are more conveniently described by r and θ than by the components x and y.
The length r is called the magnitude and the angle θ is called the direction. Our next task is
to compute the magnitude and direction from the components. The magnitude of a vector can
be found from its components with the Pythagorean theorem (figure 1.3.2). The vector is the
hypotenuse of a right triangle with legs of length x and y. If we denote the length by r, we have

r2 = x2 + y2,
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Table 1.1: Signs of the trigonometric functions
Range Sign of sine Sign of cosine Sign of tangent

0 < θ < π
2 + + +

π
2 < θ < π + − −
π < θ < 3π

2
−π < θ < −π

2

− − +

3π
2 < θ < 2π
−π

2 < θ < 0
+ − −

Figure 1.3.2: Finding the magnitude and direction of vectors
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and can find r by taking the positive square root.

For example, the vector ~v = (
√

3, 1) with components x =
√

3 and y = 1,

r = ||~v|| =
√√

3
2

+ 12 =
√

3 + 1 = 2.

The double lines around ~v are meant to be reminiscent of absolute value. Just as the absolute value
of a number is the distance from 0 to that number, the length of a vector is the distance from its
base to its tip. In general, the magnitude of the vector ~v = (x, y) is

||~v|| =
√
x2 + y2.

If a vector is multiplied by a constant, the magnitude is multiplied by the absolute value of that
constant, or

||c~v|| =
√

(cx)2 + (cy)2 = |c|
√
x2 + y2.

The absolute value bars around c mean the both vectors 3~v and −3~v have magnitude three times
that of ~v itself.

To find the direction of a vector from its components we use the tangent function. For the
vector ~v = (

√
3, 1), the angle θ satisfies

tan(θ) =
1√
3
.

We solve this equation with the inverse tangent function tan−1, finding

θ = tan−1
(

1√
3

)
=
π

6
.

This equation has many solutions, differing from each other by multiples of π. For example, it
solutions at

θ = . . . ,−11π

6
,−5π

6
,
π

6
,
7π

6
,
13π

6
, . . .

Which is the right one? Angles differing by multiples of 2π represent the same angle and pose no
major problem. Angles differing by π, however, correspond to vectors with opposite directions. A
vector with direction θ = 7π/6 points down and to the left, exactly opposite to ~v. To choose the
right value, we make sure that the signs of the components match the results in table 1.1. In this
case, both components are positive, so the direction must lie in the range 0 to π/2.

In general, the direction θ of the vector ~v = (x, y) satisfies

tan(θ) =
y

x

or

θ = tan−1
(
y

x

)
.

Most calculators and computers return answers that lie between −π/2 and π/2. To get the correct
direction, we check with table 1.1. A calculator returns the right answer when the vector points
to the right. It gives an answer off by π when the vector points left. A sure way to get the right
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Figure 1.4.1: Position as a function of time and the velocity vector
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direction is to add π to your result if the vector points left, which occurs when the horizontal
component is negative.

Consider the vector (−1, 1). A calculator would return

θ = tan−1(−1) = −π
4
.

Because the horizontal component is negative, we add π to this direction to find θ = 3π/4. In
contrast, the vector (1,−1) has direction −π/4 as our calculator says.

Multiplication by a positive constant does not change the direction of a vector. The direction
of the vector (cx, cy) satisfies the same equation

tan(θ) =
cy

cx
=
y

x
,

as (x, y). Multiplication by a negative constant switches the direction of a vector. It leaves the
tangent of the angle unchanged, but switches the sign of the horizontal component and requires us
to add π.

1.4 Velocity and parametric curves

Just as numbers measure quantities with magnitude, vectors measure quantities with both magni-
tude and direction. A familiar example is velocity. Imagine a bug walking along with eastward
speed of 30 mm/sec and northward speed of 40 mm/sec (figure 1.4.1). The velocity vector of this
bug has components x = 30 and y = 40.
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The speed is the magnitude of the velocity vector. In this case, the speed is
√

302 + 402 = 50
mm/sec. The direction of motion of the bug is

θ = tan−1
(

4

3

)
= 0.9273 radians = 53.13 degrees.

Because the horizontal component is positive, this is the correct direction.

How could we find the velocity and speed if we were given the horizontal and vertical positions
of our bug as functions of time? The equations

x(t) = 30t

y(t) = 40t.

exactly describe the bug in figure 1.4.1. It starts at (0, 0) and walks up and to the right. The speed
in the x direction at time t is the derivative of the position in the x direction at time t, or

speed in the x direction = x′(t).

Similarly, the speed in the y direction at time t is the derivative of the position in the y direction
at time t, or

speed in the y direction = y′(t).

In this case, x′(t) = 30 and y′(t) = 40, giving a velocity vector with x component 30 and y
component 40.

Consider now a flying fish that has leapt from the water and followed the path shown in
figure 1.4.2. Its position at time t is

x(t) = 10.0t

y(t) = −4.9t2 + 8.0t

if its initial horizontal speed is 10.0 m/sec, its initial vertical speed is 8.0 m/sec and gravity acts
to accelerate downward at 9.8 m/s2.

The velocity vector ~v at time t has components equal to the derivatives of each of the components
of position, so

~v = (x′(t), y′(t)) = (10.0,−9.8t+ 8.0).

The speed s is the magnitude of the velocity vector, so

s =
√
x′(t)2 + y′(t)2

=
√

100.0 + (−9.8t+ 8.0)2.

The direction at time t is

θ = tan−1
(−9.8t+ 8.0

10.0

)
.

At t = 1, the velocity vector is

~v = (x′(1), y′(1)) = (10.0,−9.8 · 1.0 + 8.0) = (10.0,−1.8).
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Figure 1.4.2: The horizontal and vertical position of a fish
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velocity vector (10.0,−1.8)

The speed is

speed =
√

10.02 + (−1.8)2 = 10.16.

At t = 1, the direction is

θ = tan−1
(−1.8

10.0

)
= −0.178.

Because the fish is moving to the right, this is the correct direction. The fish is moving down by
this time. The velocity vector is always tangent to the parametric curve for position, and will be
different at every time for any object that is accelerating.

Summary

Vectors, the mathematical version of arrows, describe quantities that involve more than one mea-
surement. They can be specified by their horizontal and vertical components. We used phase
plane vectors to better understand the dynamics of two dimensional systems of coupled au-
tonomous differential equations. Using the trigonometric functions, we have written vectors in
terms of their magnitude and direction. One familiar example of a vector quantity is the veloc-
ity of an object. The magnitude of the velocity vector is the speed.

1.5 Exercises

•EXERCISE 1.1

Find the components and starting points of the vectors in the following picture.
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•EXERCISE 1.2

Draw the following vectors.

a. The vector (1, 3) starting from (0, 0).

b. The vector (3, 1) starting from (0, 0).

c. The vector (3, 4) starting from (1, 3).

d. The vector (−1, 3) starting from (1, 3).

•EXERCISE 1.3

Find and graph the sum of the following vectors.

a. The vectors (1, 3) and (3, 1) starting from (0, 0).

b. The vectors (3, 4) and (−1, 3) starting from (1, 3).

•EXERCISE 1.4

Set α = 0.1 and α2 = 0.02 in the equations for Newton’s law of cooling in Chapter 5. Draw phase plane
vectors at the following points (if your vectors seem too long or too short, multiply or divide by a suitable
constant).

a. H = 5.0, A = 1.0.

b. H = 1.0, A = 5.0.

c. H = 1.0, A = 0.0.

d. H = 2.0, A = 30.0.

•EXERCISE 1.5

Set λ = µ = 1.0, Ka = 103, Kb = 104 in the competition equations from Chapter 5. Draw the phase plane
vector at the following points (if the vectors seem to be too long or too short to see, multiply or divide them
by a suitable constant).

a. a = 103, b = 103.

b. a = 5× 102, b = 102.

c. a = 103, b = 5× 103.

d. a = 5× 103, b = 5× 103.

•EXERCISE 1.6

Convert the following angles.

a. Find 50 degrees, 150 degrees and 250 degrees in radians.

b. Plot each of these angles.
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c. Find 1, 2, 3, 4, 5 and 6 radians in degrees.

d. Plot each of these angles.

•EXERCISE 1.7

Compute the sines, cosines and tangents of each of the angles in exercise 1.6.
•EXERCISE 1.8

Find the horizontal and vertical components of the following vectors. Graph the vectors.

a. ~v has length 6.0 and direction 1.2.

b. ~v has length 6.0 and direction 4.2.

c. ~v has length 0.1 and direction 2.2.

d. ~v has length 11.1 and direction -2.2.

•EXERCISE 1.9

Find the magnitude and direction of the vectors in exercise 1.1.
•EXERCISE 1.10

Consider the fish described in the text.

a. Find when the fish hits water (solve y(t) = 0 for t).

b. Find when the speed is a minimum. Find the speed and direction at this time.

c. Find the speed and direction when the fish takes off.

d. Find the speed and direction when the fish hits the water.

e. The acceleration is the derivative of the velocity. Find the acceleration vector for this fish.

•EXERCISE 1.11

Suppose a bird is moving according to the formula

dx

dt
= t− t2

dy

dt
= 3t− t2 + 1.

a. Find the horizontal and vertical velocity at time t.

b. Draw the velocity vector at t = 0. Find the direction and speed.

c. Draw the velocity vector at t = 1. Find the direction and speed.

d. Draw the velocity vector at t = 2. Find the direction and speed.

e. Suppose the bird starts at (0, 0). Find the position of the bird at time t. (Solve each of the equations
as a pure-time differential equation).

f. Find the acceleration of this bird (the derivative of the velocity). What does this mean?

•EXERCISE 1.12

Suppose an organism is moving according to the formula

x(t) = cos(t)

y(t) = sin(t).

a. Find the horizontal and vertical velocity at time t. Use the facts

d sin(t)

dt
= cos(t)

d cos(t)

dt
= − sin(t).

b. Draw the velocity vector at t = 0. Find the direction and speed.

c. Draw the velocity vector at t = 1. Find the direction and speed.

d. Draw the velocity vector at t = 2. Find the direction and speed.

e. Find the acceleration vector at these three times.



Chapter 2

Vectors and Discrete Dynamics

The previous section focussed on the geometric interpretation of vectors, including the important
application to velocity. However, thought of as a list of numbers, vectors can be used to describe
any set of related measurements. In particular, we can use vectors to write updating functions that
track the dynamics of two or more measurements in discrete time. We will use linear updating
systems, column vectors and matrices to study the dynamics of a population and a chemical.

2.1 Population dynamics

The bacteria described by the basic dynamical system

bt+1 = rbt

are ready to divide every hour. What if they need two hours to grow and mature before they can
divide? It takes two numbers to describe this population: the number of “juvenile” bacteria and
the number of “adult” bacteria. We set

jt = the number of juvenile bacteria at the beginning of a generation

bt = the number of adult bacteria at the beginning of a generation.

We need formulas for jt+1 and bt+1, the numbers at the beginning of the next generation, in terms
of jt and bt.

In the basic system, each adult produces r surviving offspring. These offspring are juveniles, so

jt+1 = rbt.

Suppose a fraction σ of juveniles mature and the rest perish. Then

bt+1 = σjt.

If r = 2 each adult produces two juveniles, and if σ = 0.5 half the juvenile bacteria survive
to maturity. If we start with 2.0×105 adults and 3.0×105 juveniles and r = 2.0 and σ = 0.5, we
end up with 4.0×105 juveniles (double the old number of adults) and 1.5×105 adults (half the old
number of juveniles).

15
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Table 2.1: Chemical in the lung and the ambient air

Step Volume Chemical Concentration

Air in lung
before breath

V ctV ct

Ambient air
before breath

MV γtMV γt

Air
exhaled

qV qctV ct

Air
inhaled

qV qγtV γt

Air in lung
after breathing

V (1− q)ctV + qγtV (1− q)ct + qγt

Ambient air
after breathing

MV γtMV + ctqV − qγtV (1− q
M )γt + qct

M

We call these equations an updating system, written

jt+1 = rbt
bt+1 = σjt.

Computing the new number of juveniles requires knowing the old number of adults, and computing
the new number of adults requires knowing the old number of juveniles. The dynamics of the two
measurements are coupled.

The populations described by the equations

at+1 = sat
bt+1 = rbt,

are uncoupled. The a population can be tracked without knowing the b population and vice versa.
We transformed this updating system into an updating function by studying the fraction p of type
a.

Both of these updating systems are linear. In each, new populations can be computed from old
using only addition and multiplication by constants. If the per capita growth of each population
decreases according to a law rather like the Ricker model, we might find

at+1 = sate
−α(at+bt)

bt+1 = rbte
−β(at+bt),

This updating system is nonlinear because computing new populations from old requires expo-
nentiation. Nonlinear systems are much more difficult to analyze.

2.2 Discrete diffusion

In Chapter 5, we modeled diffusive chemical exchange between two vessels with differential equa-
tions. In Chapter 1 we modeled chemical exchange in a lung but ignored changes in the ambient air.
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We can emulate the reasoning of Chapter 1 to compute the change in the ambient concentration.
Suppose the ambient air has volume M times that of lung. Table 2.1 outlines the steps to derive
the updating system

ct+1 = (1− q)ct + qγt
γt+1 = q

M ct + (1− q
M )γt.

The equation for the internal concentration ct+1 matches our original equation. The equation for
the external concentration γt+1 has the same form, but the fraction exchanged is q/M rather than
q, a factor of M smaller. Change in the larger vessel is buffered.

For instance, if ct = 2.0×10−5, γt = 5.0×10−5, q = 0.6 and M = 4, we find

ct+1 = 0.4 · 2.0×10−5 + 0.6 · 5.0×10−5 = 3.8×10−5

γt+1 = 0.15 · 5.0×10−5 + 0.85 · 2.0×10−5 = 2.45×10−5.

The concentration changes only 1/4 as much in the larger vessel.
This updating system is also linear. The state variables experience nothing more mathematically

traumatic than multiplication by constants, addition, and subtraction.

2.3 Writing linear systems with vectors and matrices

Linear updating systems can be written with the notation of vectors and matrices. We write our
state variables as a column vector which looks like(

jt
bt

)
.

Stacking the variables in a column reminds us that we stacked the equations in the updating system.
We now write (

jt+1

bt+1

)
=

(
0 r
σ 0

)(
jt
bt

)
.

The block of numbers and letters is a matrix. This is shorthand for the full updating system. How
do we decode this shorthand?

The right hand side is called multiplication of a vector by a matrix. The procedure works
as follows. Rotate the column vector and lay it on top of the matrix. Multiply each term in the
vector by the adjacent term in the matrix and add them up. We find

0 · jt + r · bt

This is the upper element in the product column vector, so

jt+1 = 0 · jt + r · bt = rbt.

This matches our original equation. To find the bottom element of the product column vector, lay
the rotated column vector on top of the bottom row of the matrix. Again, multiply each term in
the vector by the neighboring term in the matrix and add them up. We find

bt+1 = σ · jt + 0 · bt = σjt,
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again matching our original equation. The process of multiplication of a vector by a matrix is
defined to make the shorthand work.

How can we write the equations for chemical exchange in matrix shorthand? We need to find
the matrix N that fits in the equation(

ct+1

γt+1

)
= N

(
ct
γt

)
.

The top left element of N is 1− q, the coefficient of ct (the top element of the old column vector)
in the expression for ct+1 (the top element of the new column vector). The top right element of N
is q, the coefficient of γt in the equation for ct+1. The bottom left element of N is the coefficient
q
M of ct in the equation for γt+1 and the bottom right element of N is the coefficient 1− q

M of γt
in the equation for γt+1. In matrix notation,(

ct+1

γt+1

)
=

(
1− q q
q
M 1− q

M

)(
ct
γt

)
.

The matrix is a block of numbers consisting of the coefficients of our updating system.
To check, rotate the old column vector, place it on the top row of the matrix, multiply the

adjacent terms, and add them up. ct lines up with 1− q and γt lines up with q, giving

ct+1 = (1− q)ct + qγt,

consistent with our updating system. Laying the old column vector on top of the bottom row of
the matrix, ct lines up with q

M and γt lines up with 1− q
M . Multiplying and adding, we find

γt+1 =
q

M
ct + (1− q

M
)γt,

again consistent with the updating system. Matrices and column vectors provide compact way to
write linear updating systems.

Summary

We have found updating systems describing the dynamics of pairs of population and concentra-
tion measurements. When the new measurements depend on each other, the system is coupled.
Linear systems, in which old measurements are only added or multiplied by constants, can be
written with column vectors and matrices, and interpreted with the technique of multiplying
a column vector by a matrix.

2.4 Exercises

•EXERCISE 2.1

Find new values of j and b from the bacterial updating system in the following circumstances. Do you think
the population will grow or decline?

a. jt = 2.0×105, bt = 4.0×105, r = 2.0, σ = 0.75.

b. jt = 4.0×105, bt = 2.0×105, r = 2.0, σ = 0.75.
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c. jt = 7.0×105, bt = 4.0×105, r = 1.5, σ = 0.75.

d. jt = 3.0×105, bt = 9.0×105, r = 1.5, σ = 0.75.

•EXERCISE 2.2

We can use the technique of converting dynamical systems to fractions to find an updating function for the
fraction of juveniles described by the updating system for bacteria.

a. Define pt as the old fraction of juveniles.

b. Write an equation for pt+1 in terms of jt and bt.

c. Use the trick of dividing top and bottom by jt + bt to find the pt+1 in terms of pt.

d. For the case r = 2.0, σ = 0.75, graph the updating function.

e. Find the equilibrium. Is it stable?

•EXERCISE 2.3

Find all the quantities in table 2.1 in the following cases.

a. ct = 2.0×10−5, γt = 5.0×10−5, q = 0.5, V = 2.0 liters, M = 5.0.

b. ct = 2.0×10−5, γt = 5.0×10−5, q = 0.9, V = 2.0 liters, M = 5.0.

c. ct = 2.0×10−5, γt = 5.0×10−5, q = 0.5, V = 2.0 liters, M = 20.0.

•EXERCISE 2.4

Consider the matrices M and N and the column vectors ~v and ~u,

M =

(
2 3
1 4

)
, N =

(
2 4
−1 0

)
, ~v =

(
2
1

)
, ~u =

(
4
−2

)
.

Compute the following.

a. M ~v.

b. M ~u.

c. N ~v.

d. N ~u.

•EXERCISE 2.5

Consider a population of pairs of rabbits, consisting of juveniles and adults. After a month, each juvenile
grows to maturity. Each adult pair produces a pair of juveniles and itself survives.

a. Find the updating system for this population.

b. Find the associated matrix.

c. Suppose the population starts with 1 adult pair. Compute the number of juvenile and adult rabbits
after 1 month, 2 months, up to 5 months.

d. Can you see the pattern?
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Chapter 3

Matrices and Eigenvalues

We continue our study of matrices by introducing matrix multiplication, the method for com-
posing linear updating systems. The structuring quantity behind the long-term dynamics of these
systems is not the equilibrium, but the stable distribution or eigenvector and its associated
eigenvalue.

3.1 Matrix multiplication

A matrix is like a function. It takes the old column vector as input and returns the new one as
output. To understand updating functions, we composed the function with itself to figure out
what happened to the state variable after a long time. The process of composing linear updating
systems can be conveniently expressed in matrix notation with matrix multiplication.

Consider the updating system for the lung with q = 0.4 and M = 4. The updating matrix is(
0.6 0.4
0.1 0.9

)
.

Suppose the initial conditions are c0 = 1.0 and γ0 = 4.0. We find the concentrations after one
breath, c1 and γ1, by multiplying(

c1
γ1

)
=

(
0.6 0.4
0.1 0.9

)(
1.0
4.0

)

=

(
0.6 · 1.0 + 0.4 · 4.0
0.1 · 1.0 + 0.9 · 4.0

)

=

(
2.2
3.7

)
.

We find the concentrations after another breath in the same way, as(
c2
γ2

)
=

(
0.6 0.4
0.1 0.9

)(
c1
γ1

)

=

(
0.6 0.4
0.1 0.9

)(
2.2
3.7

)

21
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=

(
0.6 · 2.2 + 0.4 · 3.7
0.1 · 2.2 + 0.9 · 3.7

)
=

(
2.8
3.55

)
.

How can we find c2 and γ2 in one step, without finding c1 and γ1? To do so with updating
functions, we used composition. To compose linear updating systems with matrix multiplication,
we follow the same contortions used to multiply a vector by a matrix. Treat the second matrix as
two column vectors sitting side by side. In particular(

0.6 0.4
0.1 0.9

)(
0.6 0.4
0.1 0.9

)
=

(
0.6 · 0.6 + 0.4 · 0.1 0.6 · 0.4 + 0.4 · 0.9
0.1 · 0.6 + 0.9 · 0.1 0.4 · 0.1 + 0.9 · 0.9

)

=

(
0.4 0.6
0.15 0.85

)
To find the top left element of the product, we laid the left column of the second matrix on the top
row of the first. The top right element combines the right column of the second matrix with the
top row of the first and so forth. This process is designed to exactly match our original result. If

we multiply the product matrix by the column vector

(
c0
γ0

)
=

(
1.0
4.0

)
,

(
0.4 0.6
0.15 0.85

)(
1.0
4.0

)
=

(
2.8
3.55

)
=

(
c2
γ2

)
.

Matrix multiplication in general works as follows. We write a matrix A as

A =

(
a11 a12
a21 a22

)
.

The a’s are called the elements of the matrix. The numbering is standard. Try not to get confused
about which element is a12 and which is a21. The product of the two matrices A and B is

AB =

(
a11 a12
a21 a22

)(
b11 b12
b21 b22

)

=

(
a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22

)
.

For example, if

A =

(
2 3
1 4

)
, B =

(
−2 5
−1 0

)
we find

AB =

(
2 · −2 + 3 · −1 2 · 5 + 3 · 0
1 · −2 + 4 · −1 1 · 5 + 4 · 0

)
=

(
−7 10
−6 5

)
.

In contrast

BA =

(
b11 b12
b21 b22

)(
a11 a12
a21 a22

)

=

(
b11a11 + b12a21 b11a12 + b12a22
b21a11 + b22a21 b21a12 + b22a22

)
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With A and B from above,

BA =

(
−2 · 2 + 5 · 1 −2 · 3 + 5 · 4
−1 · 2 + 0 · 1 −1 · 3 + 0 · 4

)
=

(
1 14
−2 −3

)
,

which is not equal to AB. Like functions, matrices generally do not commute.

3.2 Equilibria of updating systems

An equilibrium for an updating system, as with a discrete-time dynamical system or differential
equation, is a point where the state variables are unchanged by the updating. For the lung model,
nothing happens if

ct+1 = ct
γt+1 = γt

or
ct = (1− q)ct + qγt
γt = (1− q

M )γt + q
M ct.

As in Chapter 5, finding solutions of these simultaneous equations can be a tricky business,
even when the updating function is a matrix. Techniques for handling this problem are treated in
courses in linear algebra. In this case, we solve the first equation in the two dimensional lung
updating system for ct and find that ct = γt (as long as q 6= 0). We solve the second equation for
γt, and find the same thing, γt = ct. As before, when the internal and ambient concentrations are
equal, exchange changes nothing, whatever the concentrations are.

Assume, as is true, that the internal and ambient concentrations converge to be equal (proving
this requires more linear algebra or some tricks). How do we find the value? The total amount
of chemical remains unchanged by the exchange process. The final concentrations are the total
amount divided by the total volume.

In our example, suppose the volume of the smaller vessel is 1.0 liters. There are initially
c0V = 1.0 moles inside and γ0MV = 4.0 · 4 · 1 = 16.0 moles outside, giving a total of 17.0 moles.
Dividing this evenly between the total volume of 5.0 liters in the two vessels gives 3.4 moles/liter.

3.3 Eigenvectors and stable distributions

Equilibria often do not help make sense of population growth models. Like our basic equation for
bacterial population growth, these models exhibit exponential growth or decay, with only a few
exceptions.

Bacteria differ from other organisms in that adults vanish upon reproduction. Consider a
population of asexually reproducing organisms where offspring born in the spring and are not
ready to reproduce until they are two years old. Three numbers describe this population: the
number of juveniles produced per adult (r), the probability that a juvenile successfully matures
into an adult (σ), and the probability that an adult survives (p). Adult survival is the process
missing from our original updating system. Letting j represent the number of juveniles and a the
number of adults, we have the updating system

jt+1 = rat
at+1 = σjt + pat.
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Figure 3.3.1: Population vectors from times t = 0 through t = 6
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In matrix form, (
jt+1

at+1

)
=

(
0 r
σ p

)(
jt
at

)
.

The matrix is called a Leslie matrix in ecological and demographic theory.
What happens if we run this system for a long time? Suppose r = 1.2, σ = 0.4 and p = 0.7.

The Leslie matrix is (
0 1.2

0.4 0.7

)
.

Will the population survive? If so, how will it grow? Suppose the population starts with 1000
adults and 1000 juveniles. Applying the matrix repeatedly, we find(

j1
a1

)
=

(
1200
1100

)
,

(
j2
a2

)
=

(
1320
1250

)
,

(
j3
a3

)
=

(
1500
1403

)
(
j4
a4

)
=

(
1684
1582

)
,

(
j5
a5

)
=

(
1898
1781

)
,

(
j6
a6

)
=

(
2137
2006

)
.

These results are easiest to visualize graphically. The column vectors are plotted as ordered pairs
in figure 3.3.1. The points eventually move off in the same direction. The ratio of jt to at is
approaching a limit, or, equivalently, that the fraction of juveniles is approaching a limit. Denoting
the fraction of juveniles at time t by pt, we find that

p0 = 0.5000, p1 = 0.5217, p2 = 0.5136, p3 = 0.5167,

p4 = 0.5155, p5 = 0.5160, p6 = 0.5158.
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This unchanging fraction is called a stable age distribution. About 51.6% of the organisms
are juveniles and the remaining 48.4% are adults. Although the total population is growing, the
fraction of juveniles remains the same.

Furthermore, the number of juveniles is increasing by a roughly constant factor. Letting λt be
the increase in the number of juveniles between generations t− 1 and t, we find

λ1 = 1.2000, λ2 = 1.1000, λ3 = 1.1364,

λ4 = 1.1224, λ5 = 1.1276, λ6 = 1.1257.

Mathematically, the stable age distribution is called an eigenvector and the constant increase
of the juvenile population is an eigenvalue. Eigenvectors and eigenvalues are the focus of linear
algebra, and are the tools needed to find the stability of equilibria of high dimensional differential
equations and updating systems and much more.

In general, an eigenvector ~v of a matrix A is any vector ~v that satisfies

A~v = λ~v.

for some eigenvalue λ. An eigenvector and eigenvalue are associated with a particular matrix.
Most matrices have more than one eigenvector and associated eigenvalue (our matrices have 2).
Multiplying an eigenvector by the matrix preserves the direction and changes the magnitude by a
factor of λ. If λ < 0, the direction is reversed.

In our example, the vector ~v =

(
820.3
769.8

)
is an eigenvector. Techniques for finding eigenvectors

are a key part of linear algebra. We find(
0 1.2

0.4 0.7

)(
820.3
769.8

)
=

(
923.8
867.05

)
= 1.1262

(
820.3
769.8

)
.

The eigenvalue is 1.1262, meaning that the population grows by a factor of 1.1262 when it reaches
its stable age distribution. The total population will eventually grow exponentially, but, unlike a
one dimensional population, will not do so immediately. The total population is compared with
this exponential rate in figure 3.3.2.

Summary

We have composed linear updating systems, matrices, with matrix multiplication. Like or-
dinary functional composition, matrices generally do not commute. Although equilibria can be
found in the same way as in one dimension, they often give little insight about the solutions. For
Leslie matrices that describe growth of populations broken into different age classes, the stable
age distribution or eigenvector and the associated growth rate or eigenvalue best describe the
long-term behavior of the population.

3.4 Exercises

•EXERCISE 3.1

Suppose r = 2.0 and σ = 0.6, and that j0 = 1.0×106 and b0 = 5.0×107.
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Figure 3.3.2: The growth of a bacterial population compared with an exponential function
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a. Find the matrix for the updating system.

b. Find j1 and b1.

c. Find j2 and b2.

d. Find the two step updating system by multiplying the matrix by itself.

e. Find j2 and b2 using the result of d.

•EXERCISE 3.2

Suppose q = 0.2, M = 5.0, V = 2.5 liters, c0 = 2.0×10−2 moles/liter and γ0 = 7.0×10−2 moles/liter in the
lung model.

a. Write the matrix for the updating system.

b. Find c1 and γ1.

c. Find c2 and γ2.

d. Find the two step updating system by multiplying the matrix by itself.

e. Find c2 and γ2 using the result of d.

f. Find the three step updating system (multiply the matrix from d by the original matrix).

g. Find c3 and γ3 using the result of f and compare with the result found by multiplying the original

matrix by

(
c2
γ2

)
.

•EXERCISE 3.3

Consider the updating system for bacteria without plugging in specific values for r and σ.

a. Find the two step updating system by multiplying the matrix by itself.

b. Find j2 and b2 as functions of j0 and b0.
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•EXERCISE 3.4

Suppose a11 = 11, a12 = 12, a21 = 21, a22 = 22 and

B =

(
1 3
2 4

)
,~v =

(
3
7

)
.

a. Write A as a matrix.

b. Find the components of B.

c. Find B~v.

d. Multiply the result of c by A.

e. Find AB.

f. Multiply ~v the result of e.

g. Find BA. Do the matrices commute?

•EXERCISE 3.5

Write the Leslie matrices in the following circumstances. Compute populations after 3 generations.

a. r = 0.4, σ = 0.8, p = 0.9, j0 = 1000, a0 = 1000.

b. r = 0.4, σ = 0.8, p = 0.9, j0 = 0, a0 = 1000.

c. r = 0.4, σ = 0.8, p = 0.9, j0 = 1000, a0 = 0.

d. r = 0.9, σ = 0.8, p = 0.4, j0 = 1000, a0 = 1000.

•EXERCISE 3.6

Apply Leslie matrix theory to exercise 2.5.

a. Write the Leslie matrix.

b. Find the number of juvenile and adult pairs after 1, 2, up to 5 months starting from 1 adult pair and
no juveniles.

c. Find the fraction of juveniles at each of these times.

d. Find the growth rates of the juvenile and adult populations.

e. Take a guess at the eigenvalue.

•EXERCISE 3.7

Some birds inhabit two nearby islands. Each year, a fraction q of the birds on the first island leave for the
second island and a fraction p of the birds on the second island leave for the first. The rest stay put. Suppose
p = 0.2, q = 0.8, and that there are initially 1000 birds on each island.

a. How many birds are on each island after 1, 2, and 3 years?

b. Write the updating system giving the number of birds on each island.

c. Write the associated matrix.

d. Does this matrix resemble the one for a very different model?

•EXERCISE 3.8

The solution of the updating system with the matrix

(
1 1
0 1

)
are one of the rare cases that does not grow

or decay exponentially. Try to find the solution and describe what it does. Do you have any idea why this

is an exception to the rule?
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Chapter 4

Matrices and Markov Chains

We can think of Markov chains as updating systems, and describe their dynamics with matrices.
This compact notation can be used to find equilibrium probabilities for Markov chains and to
describe Markov chains with more than two possible states.

4.1 Matrices and conditional distributions

Recall the Markov chain describing a molecule hopping in and out of a cell. Letting It indicate
that the molecule is inside and Ot that it is outside during minute t, we expressed the model with
conditional probability notation as

Pr(It+1|It) = 0.98

Pr(It+1|Ot) = 0.01

Pr(Ot+1|It) = 0.02

Pr(Ot+1|Ot) = 0.99.

Let pt designate the probability that the molecule is inside and qt the probability that the molecule
is outside at time t. According to the law of total probability,

pt+1 = Pr(It+1|It) Pr(It) + Pr(It+1|Ot) Pr(Ot)

= 0.98pt + 0.01qt

qt+1 = Pr(Ot+1|It) Pr(It) + Pr(Ot+1|Ot) Pr(Ot)

= 0.02pt + 0.99qt.

These two equations define a linear updating system. Knowing the probabilities at time t, we can
compute the probabilities at time t+ 1 using only addition and multiplication by constants.

We can rewrite the equations in matrix and vector notation as(
pt+1

qt+1

)
=

(
0.98 0.01
0.02 0.99

)(
pt
qt

)
. (4.1.1)

The left hand side is computed by multiplying the matrix by the vector. We compute the upper
element in the product column vector (pt+1) by rotating the original column vector, laying it on

29
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top of the matrix, multiplying adjacent terms, and adding up. Similarly, the lower element of the
product column vector is computed by laying the original column vector on the lower row of the
matrix, multiplying adjacent terms and adding up.

If

(
pt
qt

)
=

(
0.8
0.2

)
, meaning that the molecule has an 80% chance of being inside and a 20%

of being outside at time t, the probabilities that it is in or out at time t+ 1 are(
pt+1

qt+1

)
=

(
0.98 0.01
0.02 0.99

)(
0.8
0.2

)

=

(
0.98 · 0.8 + 0.01 · 0.2
0.02 · 0.8 + 0.99 · 0.2

)

=

(
0.786
0.214

)
.

Matrices and vectors describing Markov chains have special properties. The vector lists the
probabilities that the system is in a particular state (“In” or “Out”). Because the molecule must
be somewhere, the elements of the vector must add to 1. Vectors with elements that add to 1 are
called probability vectors. The columns of the matrix are conditional distributions. The first
column gives the probability distribution at time t + 1 conditional on the molecule being inside
at time t. The second column gives the probability distribution at time t + 1 conditional on the
molecule being outside at time t. Because the elements of a conditional probability distribution
add to 1, the elements in each column of the matrix add to 1. Matrices with columns that add to
1 are called probability matrices. Every Markov chain with only a finite number of states can
be summarized in a probability matrix.

In general, suppose a system can be in states designated 1 and 2. Let

aij = Pr(state is i at time t+ 1|state is j at time t).

For our molecule, the states are “In” and “Out”. Designating “In” as state 1 and “Out” as state
2, this translates to

a11 = 0.98

a12 = 0.01

a21 = 0.02

a22 = 0.99.

Let pi(t) denote the probability that the system is in state i at time t. We can write the general
two state Markov chain as (

p1(t+ 1)
p2(t+ 1)

)
=

(
a11 a12
a21 a22

)(
p1(t)
p2(t)

)
.

Because this matrix describes a Markov chain, it must be a probability matrix and satisfy a11+a21 =
1 and a12 + a22 = 1.

A word of warning is required here. Some authors write the matrices describing Markov chains
“sideways,” with rows that add to 1. The vectors are written as row vectors and multiplied on
the left hand side. This creates endless confusion. To avoid it, make sure that you understand how
a book or paper defines the matrix, and rewrite it if it is sideways.
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4.2 Equilibria of Markov chains

What does all this fancy notation do for us? In Chapter 6, we used the fact that qt = 1 − pt
to rewrite the updating system 4.1.1 as an updating function. We used the techniques from the
first quarter to find an equilibrium probability that the molecule is inside the cell of 1/3. If many
molecules followed this process, about 1/3 would be inside (and 2/3 outside) after a long time.
Equilibrium does not mean that the molecule is sitting still, just that its position, on average, is
the same.

With the updating system, the long term behavior is again described by the equilibrium. Unlike
the updating systems for population dynamics, updating systems defined by probability matrices
almost always have equilibrium values (the exception is when all moves occur with probability 1
and the object jumps around indefinitely).

We can get an idea of the value of the equilibrium by running the system for a while. Suppose
we start the updating system 4.1.1 with a molecule known to be inside the cell, or(

p0
q0

)
=

(
1
0

)
.

We can find the probabilities at later times by repeatedly applying equation 4.1.1. In this case,(
p1
q1

)
=

(
0.98
0.02

)
,

(
p2
q2

)
=

(
0.9606
0.0394

)
,

(
p3
q3

)
=

(
0.9418
0.058

)

and so forth. Were we to do this for many iterations, we would find pt getting closer and closer to
0.333 and qt getting closer and closer to 0.667.

We solve for the equilibrium by finding values p∗ and q∗ which remain unchanged by the
dynamics, or

p∗ = 0.98p∗ + 0.01q∗

q∗ = 0.02p∗ + 0.99q∗.

If the probabilities p∗ and q∗ satisfied these equations, they would remain the same at time t+ 1.
We attack these simultaneous equations by solving the first for q∗ in terms of p∗. Moving the
0.98p∗ to the left hand side and dividing by 0.02, we find q∗ = 2p∗. Next, we plug this into the
second equation, finding

2p∗ = 0.02p∗ + 0.99 · 2p∗

= 2p∗.

We were hoping to solve for p∗ and ended up with an equation that works for any value of p∗.
What went wrong? To solve for the equilibrium probabilities in a Markov chain, we must use the

fact that

(
p∗

q∗

)
is a probability vector, or that p∗ + q∗ = 1. Plugging in q∗ = 2p∗,

p∗ + 2p∗ = 1

which has solution p∗ = 0.333. Furthermore, q∗ = 2p∗ = 0.666.
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We can check our solution by trying

(
p∗

q∗

)
=

(
pt
qt

)
in equation 4.1.1,

(
0.98 0.01
0.02 0.99

)(
p∗

q∗

)
=

(
0.98 0.01
0.02 0.99

)(
0.333
0.666

)
=

(
0.333
0.666

)
.

We have indeed found the equilibrium probabilities. Molecules will spend twice as much time, on
average, outside as inside the cell.

4.3 Generalized Markov chains

Why write a Markov chain as a matrix when we can find the same result with a single equation by
solving for q = 1 − p? First, equation 4.1.1 presents all the probabilities in an easily read format.
Second, this notation works for Markov chains with more than two possible states. Consider the
situation where a molecule can be transferred among three cells in different arrangements. Suppose
it transfers among cells according to the following rules.

• If it is in cell 1, it remains there with probability 0.92, moves to cell 2 with probability 0.06,
and to cell 3 with probability 0.02.

• If it is in cell 2, it remains there with probability 0.91, moves to cell 1 with probability 0.04,
and to cell 3 with probability 0.05.

• If it is in cell 3, it remains there with probability 0.96, moves to cell 1 with probability 0.01,
and to cell 2 with probability 0.03.

Let pi(t) represent the probability that the molecule is in cell i at time t. We can describe the
probabilities at time t + 1 with the law of total probability. There are 3 ways a molecule could
come to be in cell 1: it could have been in cell 1 and stayed (probability 0.92p1(t)), been in cell
2 and moved to cell 1 (probability 0.04p2(t)), or been in cell 3 and moved to cell 1 (probability
0.01p3(t)). Applying the same reasoning to each of the other cells, we find

p1(t+ 1) = 0.92p1(t) + 0.04p2(t) + 0.01p3(t)

p2(t+ 1) = 0.06p1(t) + 0.91p2(t) + 0.03p3(t)

p3(t+ 1) = 0.02p1(t) + 0.05p2(t) + 0.96p3(t).

These equations define a linear updating system for three probabilities simultaneously.

The probabilities are arranged like a matrix, exactly as with 2 states. We write p1(t+ 1)
p2(t+ 1)
p3(t+ 1)

 =

 0.92 0.04 0.01
0.06 0.91 0.03
0.02 0.05 0.96


 p1(t)
p2(t)
p3(t)

. (4.3.1)

This matrix-vector expression encodes the dynamical system in matrix form. The method for
matrix multiplication is the same as before. If we started a molecule in the first cell (so p1(0) = 1,
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p2(0) = 0 and p3(t) = 0), we use equation 4.3.1 to find the probabilities at time 1 as p1(1)
p2(1)
p3(1)

 =

 0.92 0.04 0.01
0.06 0.91 0.03
0.02 0.05 0.96


 p1(0)
p2(0)
p3(0)


=

 0.92 0.04 0.01
0.06 0.91 0.03
0.02 0.05 0.96


 1

0
0


=

 1 · 0.92 + 0 · 0.04 + 0 · 0.01
1 · 0.06 + 0 · 0.91 + 0 · 0.03
1 · 0.02 + 0 · 0.05 + 0 · 0.96


=

 0.92
0.06
0.02

.
The molecule has a 92% chance of being in the first cell, a 6% chance of being in the second and a
2% chance of being in the third. We follow the same procedure to find the probabilities at time 2
as  p1(2)

p2(2)
p3(2)

 =

 0.92 0.04 0.01
0.06 0.91 0.03
0.02 0.05 0.96


 0.92

0.06
0.02


=

 0.92 · 0.92 + 0.06 · 0.04 + 0.02 · 0.01
0.92 · 0.06 + 0.06 · 0.91 + 0.02 · 0.03
0.92 · 0.02 + 0.06 · 0.05 + 0.02 · 0.96

 =

 0.8490
0.1104
0.0406

.
If we continued this procedure for a very long time, the results would converge to an equilibrium.

Can we find the equilibrium more efficiently? The equations for equilibrium encode the usual
idea; things remain the same. Letting p∗i be the equilibrium probability that the molecule lies in
cell i,

p∗1 = 0.92p∗1 + 0.04p∗2 + 0.01p∗3

p∗2 = 0.06p∗1 + 0.91p∗2 + 0.03p∗3

p∗3 = 0.02p∗1 + 0.05p∗2 + 0.96p∗3.

As before, we solve these step by step, ending by using the fact that p∗1 + p∗2 + p∗3 = 1. We solve the
first equation for p∗1 in terms of p∗2 and p∗3, finding

p∗1 = 0.92p∗1 + 0.04p∗2 + 0.01p∗3

0.08p∗1 = 0.04p∗2 + 0.01p∗3

p∗1 = 0.5p∗2 + 0.125p∗3.

Plugging into the second equation, we can find p∗2 in terms of p∗3 as

p∗2 = 0.06(0.5p∗2 + 0.125p∗3) + 0.91p∗2 + 0.03p∗3
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Figure 4.3.1: The position of a molecule over time
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= 0.03p∗2 + 0.0075p∗3 + 0.91p∗2 + 0.03p∗3

= 0.94p∗2 + 0.0375p∗3

0.06p∗2 = 0.0375p∗3

p∗2 = 0.625p∗3.

Plugging into the previous equation, we find

p∗1 = 0.5 · 0.625p∗3 + 0.125p∗3 = .4375p∗3.

Now, we use the fact that the probabilities add to 1,

1 = p∗1 + p∗2 + p∗3 = 0.4375p∗3 + 0.625p∗3 + p∗3 = 2.0625p∗3.

Dividing by 2.0625, we find p∗3 = 0.485. Working backwards, p∗2 = 0.303 and p∗1 = 0.212. Although
there is a general drift of molecules toward the third cell, only about half of them will be there
after a long time. The position of an individual molecule over time is plotted in figure 4.3.1. Even
though the molecule spends a bit more time in cell 3, it continues to jump among the cells.

Summary

We have seen how to write the conditional probabilities describing a Markov chain in matrix form
as an updating system. The probabilistic equilibria of these systems can be found by solving a pair
of simultaneous equations. The method can be extended to Markov chains describing systems
which can take on more than two states.



4.4. EXERCISES 35

4.4 Exercises

•EXERCISE 4.1

Using the updating system in equation 4.1.1, find the probability that a molecule that starts in the first cell
at time 0 is in the first cell at time 3.
•EXERCISE 4.2

A very clean bird fanatically preens itself when it gets even one louse, and therefore never has as many as
two. Suppose the probability of it getting rid of a louse in a day is 0.2, but the probability of getting a louse
when it has none (and lessens its vigilance) is 0.4 in a day.

a. Write the matrix describing this system.

b. If the bird starts out with no lice, what is the probability it has a louse on day 1, day 2 and day 3?

c. What is the equilibrium probability that the bird has a louse?

•EXERCISE 4.3

Consider Markov chains describing the occupancy of two islands. On the first, the population goes extinct
with probability 0.01 when occupied, and is founded again with probability 0.01 when extinct. On the second,
the population goes extinct with probability 0.3 when occupied and is founded again with probability 0.3
when extinct.

a. Write the matrices describing these two islands.

b. Find the equilibrium fraction of time they are occupied.

c. How would observations of these two islands to differ?

•EXERCISE 4.4

Using the probabilities in equation 4.3.1, find the following.

a. If a molecule is in cell 2 at time 0, find the probability vector at times 1 and 2.

b. If a molecule is in cell 3 at time 0, find the probability vector at times 1 and 2.

•EXERCISE 4.5

A slightly less clean bird than in exercise 4.2 only cleans itself fanatically when it has two lice. In particular,
the probability that it gets a new louse when it has 0 or 1 is 0.4. It never gets 2 lice in one day or loses a
louse when it has 1. When it has 2, it removes one with probability 0.2 and both with probability 0.3.

a. Draw a diagram illustrating what this bird does.

b. Write the matrix describing this process.

c. Find the equilibrium vector.

d. Find the average number of lice on this bird.

•EXERCISE 4.6

Assume that A is a probability matrix and ~v is a probability vector. Prove that the product A~v is a

probability vector.
•EXERCISE 4.7

Assume that A is a probability matrix with elements aij . We will find a general expression for the associated
equilibrium vector.

a. Using the fact that A is a probability matrix, write a11 in terms of a21 and a22 in terms of a12.

b. Write the equations for the equilibrium probabilities p∗1 and p∗2.

c. Solve these equations and try to write your solution in as simple a form as possible.

d. Interpret your answer. The idea is that the denominator represents the total switching rate and the
numerator the rate of switching into a particular state.
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Answers

1.1.

a. Starting point is (-1,2). Horizontal component is -2, vertical component is -1.

b. Starting point is (1,-2). Horizontal component is -1, vertical component is 4.

1.5.

a. Vector starts at (103, 103) and has horizontal component −103 and vertical component 800.
I divided the length by 5 to get it to look nice.

b. Vector starts at (5×102, 102) and has horizontal component 200 and vertical component 94.
This one looks nice without dividing.

1.6.

a. 50 degrees = 0.87266 radians.

c. 1 radian = 57.296 degrees.

1.8.

a. Horizontal component is 2.174 and vertical component is 5.592.

b. Horizontal component is -2.942 and vertical component is -5.229.

1.9.

a. Magnitude
√

(−2)2 + (−1)2 = 2.236, direction = π + tan−1(0.5) = 3.605.

b. Magnitude
√

(−1)2 + 42 = 4.123, direction = π + tan−1(−4.0) = 1.816.

1.10.

a. The fish hits when −4.9t2 + 8.0t = 0 or t = 1.633.

c. The velocity vector at t = 0 is (10.0, 8.0). The speed is the magnitude of this vector, or 12.81
and the direction is 0.675 radians (or 38.7 degrees).

1.12.
2.1.

a. bt+1 = 0.75 · jt = 1.5×105. jt+1 = 2.0 · bt = 8.0×105. This population will probably grow,
because each adult produces 1.5 offspring that survive to adulthood.

37
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2.3.

a.

Step Volume Chemical Concentration

Air in lung
before breath

2.0 liters 4.0×10−5 moles 2.0×10−5moles
liter

Ambient air
before breath

10.0 liters 5.0×10−4 moles 5.0×10−5moles
liter

Air
exhaled

1.0 liters 2.0×10−5 moles 2.0×10−5moles
liter

Air
inhaled

1.0 liters 5.0×10−5 moles 5.0×10−5moles
liter

Air in lung
after breathing

2.0 liters 7.0×10−5 moles 3.5×10−5moles
liter

Ambient air
after breathing

10.0 liters 4.7×10−4 moles 4.7×10−5moles
liter

2.4.

a.

(
7
6

)
.

b.

(
2
−4

)
.

2.5.

a.

jt+1 = at

at+1 = jt + at.

b.

(
0 1
1 1

)
.

c. Starts at

(
0
1

)
, then goes

(
1
1

)
,

(
1
2

)
,

(
2
3

)
,

(
3
5

)
,

(
5
8

)
.

d. The number of adult is the sum of the number the previous month with the number a month
before that.

3.1.

a.

(
0 2.0

0.6 0

)
.

b.

(
j1
b1

)
=

(
1.0×108

6.0×105

)
.

c.

(
j2
b2

)
=

(
1.2×106

6.0×107

)
.
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d.

(
1.2 0
0 1.2

)
.

e.

(
j2
b2

)
=

(
1.2×106

6.0×107

)
.

3.5.

a.

(
0 0.4

0.8 0.9

)
. Population is j3 = 740, a3 = 2209.

b.

(
0 0.4

0.8 0.9

)
. Population is j3 = 452, a3 = 1305.

3.6.

a. The Leslie matrix is

(
0 1
1 1

)
.

b.

(
0
1

)
,

(
1
1

)
,

(
1
2

)
,

(
2
3

)
,

(
3
5

)
,

(
5
8

)
.

c. The fraction of juveniles goes 0.0, 0.5, 0.333, 0.667, 0.6, 0.625.

d. The growth rates for juveniles are 1.0, 2.0, 1.5, 1.667. For adults, they are 2.0, 1.5, 1.667, 1.6.

e. The eigenvalue is around 1.62.

3.8.

4.2.

a.

(
0.6 0.2
0.4 0.8

)
.

b. 0.4 on day 1, 0.56 on day 2 and 0.624 on day 3.

c. 0.666.

4.4.

a.  p1(1)
p2(1)
p3(1)

 =

 0.92 0.04 0.01
0.06 0.91 0.03
0.02 0.05 0.96


 0

1
0


=

 0 · 0.92 + 1 · 0.04 + 0 · 0.01
0 · 0.06 + 1 · 0.91 + 0 · 0.03
0 · 0.02 + 1 · 0.05 + 0 · 0.96


=

 0.04
0.91
0.05
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 p1(2)
p2(2)
p3(2)

 =

 0.92 0.04 0.01
0.06 0.91 0.03
0.02 0.05 0.96


 0.04

0.91
0.05


=

 0.04 · 0.92 + 0.91 · 0.04 + 0.05 · 0.01
0.04 · 0.06 + 0.91 · 0.91 + 0.05 · 0.03
0.04 · 0.02 + 0.91 · 0.05 + 0.05 · 0.96


=

 0.0737
0.8320
0.0943


4.5.

b.

 0.6 0.0 0.3
0.4 0.6 0.2
0.0 0.4 0.5

.

c.

 p∗1
p∗2
p∗3

 =

 0.25
0.417
0.333

.

d. L̄ = 0 · 0.25 + 1 · 0.417 + 2 · 0.333 = 1.083.

4.6. Let the vector be

(
v1
v2

)
where v1 + v2 = 1. Then

(
a11 a12
a21 a22

)(
v1
v2

)
=

(
a11v1 + a21v2
a12v1 + a22v2

)
.

To prove this is a probability vector, we must show that the elements add to 1. We find

a11v1 + a21v2 + a12v1 + a22v2 = (a11 + a12)v1 + (a22 + a21)v2 = v1 + v2 = 1

where we used the fact that A is a probability matrix.

4.7.

a. We can rewrite the matrix as (
1− a12 a12
a21 1− a21

)
.

b.

(1− a12)p∗1 + a21p
∗
2 = p∗1

a21p
∗
1 + (1− a21)p∗2 = p∗2.

c. The first equation has solution

p∗2 =
a21
a12

p∗1.
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Plugging into p∗1 + p∗2 = 1, we find

1 = p∗1 +
a21
a12

p∗1 = (1 +
a21
a12

)p∗1

p∗1 =
1

1 + a21
a12

=
a12

a12 + a21

p∗2 =
a21

a12 + a21
.

a12 gives the rate at which things switch from state 2 into state 1. The fraction in state 1 is
the ratio of this rate to the total switching rate. If a12 < a21, p

∗
1 < 1/2 and p∗2 > 1/2.


