NAME:	

MATH 1180 Midterm III

Do all three problems, using one page of notes but no calculator.

- 1. A young woman named Sheafe is about to celebrate her 21st birthday, and invites 21 friends to the party. Each friend comes to the party independently with probability 0.7.
 - **a.** What is the mean of the party attendance?
 - **b.** What is the variance of the party attendance?
 - c. Write the formula for having exactly 16 friends attend.
 - d. Write the formula you would evaluate to estimate this with the normal distribution.
 - e. Which of the answers to a-d would remain the same if the friends did not attend independently?
 - **f. Extra Credit:** To 3 decimal places, what is $\sqrt{3}$? How about $\sqrt{2}$?

number	value
21×0.3	6.3
21×0.7	14.7
21×0.3^{2}	1.89
21×0.7^{2}	10.29
$21 \times 0.3 \times 0.7$	4.41
$\sqrt{21 \times 0.3}$	2.51
$\sqrt{21 \times 0.7}$	3.83
$\sqrt{21 \times 0.3^2}$	1.37
$\sqrt{21 \times 0.7^2}$	3.21
$\sqrt{21 \times 0.3 \times 0.7}$	2.1

- 2. Congratulatory phone calls arrive at a rate of 0.6/hour starting at 8:00 a.m. and continue at that rate until midnight.
 - **a.** What is the approximate probability of no call during 1 minute?
 - **b.** When is the expected time of the first congratulatory call?
 - **c.** How many calls would Sheafe expect to miss if she left for 2 hours to go shopping at City Creek Center? What would the variance be?
 - **d.** What is the probability that she didn't miss any calls while shopping?
 - **e. Extra Credit:** Suppose calls last an average of 5 minutes. About how many people would get busy signals? What assumptions did you have to make?

3. Let the random variable D denote how early or late a gift arrives, with D=-1 meaning one day early, D=0 meaning right on time, and D=1 meaning one day late. The cost of the gifts is either C=\$20 or C=\$50, described by the following table.

	D = -1	D = 0	D = 1		
C = 20	?	0.4	?	\rightarrow	$\Pr(C=20) = 0.6$
C = 50	?	?	0.15	\rightarrow	$\Pr(C = 50) = 0.4$
	<u> </u>	<u> </u>	↓		
	$\Pr(D = -1) = 0.2$	$\Pr(D=0) = 0.6$	$\Pr(D=1) = 0.2$		

- **a.** Fill in the missing values. What is this table called?
- **b.** Find the conditional distribution if C = 20. What does this tell you about whether the two measurements are independent?
- **c.** Is the correlation of D and C positive, negative or zero? Convince me of your answer.
- d. Extra Credit: What year was George Washington born? What year did Thomas Arundel, Archbishop of Canterbury and friend of King Henry IV, die?