NAME: \qquad

MATH 1180
 Midterm III

Do all three problems, using one page of notes but no calculator.

1. A young woman named Sheafe is about to celebrate her 21st birthday, and invites 21 friends to the party. Each friend comes to the party independently with probability 0.7 .
a. What is the mean of the party attendance?
b. What is the variance of the party attendance?
c. Write the formula for having exactly 16 friends attend.
d. Write the formula you would evaluate to estimate this with the normal distribution.
e. Which of the answers to a-d would remain the same if the friends did not attend independently?
f. Extra Credit: To 3 decimal places, what is $\sqrt{3}$? How about $\sqrt{2}$?

number	value
21×0.3	6.3
21×0.7	14.7
21×0.3^{2}	1.89
21×0.7^{2}	10.29
$21 \times 0.3 \times 0.7$	4.41
$\sqrt{21 \times 0.3}$	2.51
$\sqrt{21 \times 0.7}$	3.83
$\sqrt{21 \times 0.3^{2}}$	1.37
$\sqrt{21 \times 0.7^{2}}$	3.21
$\sqrt{21 \times 0.3 \times 0.7}$	2.1

2. Congratulatory phone calls arrive at a rate of $0.6 /$ hour starting at $8: 00 \mathrm{a} . \mathrm{m}$. and continue at that rate until midnight.
a. What is the approximate probability of no call during 1 minute?
b. When is the expected time of the first congratulatory call?
c. How many calls would Sheafe expect to miss if she left for 2 hours to go shopping at City Creek Center? What would the variance be?
d. What is the probability that she didn't miss any calls while shopping?
e. Extra Credit: Suppose calls last an average of 5 minutes. About how many people would get busy signals? What assumptions did you have to make?
3. Let the random variable D denote how early or late a gift arrives, with $D=-1$ meaning one day early, $D=0$ meaning right on time, and $D=1$ meaning one day late. The cost of the gifts is either $C=\$ 20$ or $C=\$ 50$, described by the following table.

	$D=-1$	$D=0$	$D=1$		
$C=20$	$?$	0.4	$?$	$\rightarrow \quad \operatorname{Pr}(C=20)=0.6$	
$C=50$	$?$	$?$	0.15	\rightarrow	$\operatorname{Pr}(C=50)=0.4$
	\downarrow	\downarrow	\downarrow		
	$\operatorname{Pr}(D=-1)=0.2$	$\operatorname{Pr}(D=0)=0.6$	$\operatorname{Pr}(D=1)=0.2$		

a. Fill in the missing values. What is this table called?
b. Find the conditional distribution if $C=20$. What does this tell you about whether the two measurements are independent?
c. Is the correlation of D and C positive, negative or zero? Convince me of your answer.
d. Extra Credit: What year was George Washington born? What year did Thomas Arundel, Archbishop of Canterbury and friend of King Henry IV, die?

