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8.10 Supplementary Problems for Chapter 8

•EXERCISE 8.1

Bacteria can be in one of two states: chemical producing (with probability 0.2) or chemical absorbing (with
probability 0.8). Bacteria produce chemical at a rate of 2.0 femtomoles/second or absorb at a rate of 4.0
femtomoles/second. Suppose there are 100 bacteria in a culture, acting independently.

a. Find the mean and variance of the number in the producing and absorbing states.
b. Find the mean and variance of the rate of change of total chemical.
c. Write an exact expression for the probability that the amount of chemical is decreasing at any particular

time. How would you evaluate it?
d. If instead of acting independently, all bacteria respond to the same external cue (but with the same

probabilities), find the answers to parts b and c.

•EXERCISE 8.2

It is observed that a population grows by a factor R determined by the temperature T as follows:

R =


1.5 with probability 0.2 if T=10
0.5 with probability 0.8 if T=10
1.5 with probability 0.7 if T=20
0.5 with probability 0.3 if T=20

Furthermore T = 10 with probability 0.4 and T = 20 with probability 0.6.

a. Will this population grow?
b. Find the correlation of temperature and growth rate.

•EXERCISE 8.3

One team hits 30 out of 100 shots, and another hits 40 out of 100. Use the normal approximation to decide

whether the second team really shoots better.
•EXERCISE 8.4

Cosmic rays are thought to hit an object according to a Poisson process. 19 hit during the first minute and

25 during the second. Use the normal approximation to find 98% confidence limits around the maximum

likelihood estimate of the true rate.
•EXERCISE 8.5

Molecules bind to a certain type of receptor at a rate of λ per second and never unbind.

a. Suppose the receptor begins in an unbound state. Write and solve a differential equation for the
probability the receptor is unbound at time t.

b. A cell has two of these receptors. One binds at time t = 1.5 and another at t = 2.5. Find the maximum
likelihood estimate of λ.

•EXERCISE 8.6

Suppose T measures temperature above 37◦C in ◦C, and A measures an activity level. For three cells,
t1 = 1, t2 = 2, t3 = 3, a1 = 2, a2 = 3 and a3 = 3

a. Plot A against T .
b. Find the linear regression of A on T .
c. Find the residuals.

•EXERCISE 8.7

A model indicates that the probability a cell is healthy after a treatment is 1 − q, that it is damaged is
2q/3 and that it is moribund is q/3 for some unknown parameter q. 20 cells are tested: 10 are found to be
healthy, 6 found to be damaged and 4 found to be moribund.

a. Find the likelihood function and the maximum likelihood estimate of q.
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b. Without the model, the probabilities are 1− q1− q2 (healthy), q1 (damaged) and q2 (moribund), with
maximum likelihood estimates q1 = 0.3 and q2 = 0.2. Find the likelihood in this case. Do you think
this model is better supported by the data than the one in a?

•EXERCISE 8.8

Although students struggled heroically to correctly solve the 8 problems on their final, their professor
assigned random grades independently for each problem and student, giving 10 with probability 0.2, 15 with
probability 0.3, 20 with probability 0.4 and 25 with probability 0.1.

a. Find the mean and variance of the total score.
b. Find the probability that a student gets a perfect score.
c. Use the normal approximation to find the probability that a student scores above 140. What is the

lowest score which scores in the top 25%?
d. Sketch the distribution of scores on this test.

•EXERCISE 8.9

A new drug produces measurable reduction in a symptom in 75 out of 100 patients tested. An older drug
produces measurable reduction in the symptom 65% of the time.

a. Use the normal approximation to find 99% confidence interval for the fraction of patients aided by the
new drug.

b. Test the hypothesis that the new drug is no better than the old drug. What is the significance level?
Make sure to say whether you used a one- or two-tailed test and why.

•EXERCISE 8.10

The following data for temperature T and height H are measured:

T H
10.0 12.0
12.0 13.0
14.0 15.0
16.0 17.0
18.0 20.0

A proposed regression line is H = T + 1.0.

a. Graph the data and proposed regression line.
b. Find the residuals.
c. Find SSE (with this line), SST and r2.

•EXERCISE 8.11

The average density of trout along a stream is 0.2 per meter.

a. Find the probability of 3 or more trout in 5 meters.
b. Find the expected number and coefficient of variation of the number of trout in 1 kilometer.
c. If the stream flows at 2 meters per second (and the trout don’t swim), find the rate at which trout

pass a given point.

•EXERCISE 8.12

50 students from a standard calculus class have a normally distributed scores on a standardized test with
mean 60 and 30 students from an innovative new calculus class score a mean of 63. The standard deviation
of each and every student’s score is known to be 5.0.

a. In mathematical language, give the null hypothesis that students from the reformed class did no better
than those from the standard class.

b. What is the significance level of the test?
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•EXERCISE 8.13

The following data describe 10 measurements taken of height from control and treatment populations known
to have normal distributions with standard deviation of 4.0. Test whether the treatment mean is different
from the control mean. What is the significance level? What would you do if you did not know the standard
deviation?

control treatment
11.0 8.86
10.8 16.7
13.3 12.8
3.03 12.9
14.5 15.2
9.36 21.1
3.77 7.84
6.88 9.36
7.92 7.89
8.97 11.2

•EXERCISE 8.14

A lazy scientist wants to estimate the rate at which wolves leave Yellowstone Park by waiting for the first
one to leave. This happens after 3.0 months.

a. Find the maximum likelihood estimate of the rate.
b. Find 95% confidence limits around this estimate.
c. How would you use the method of support to approximate these confidence limits? Write the equation

you would solve.
d. When is the most likely time for the second wolf to leave? The mean time?

•EXERCISE 8.15

A company is testing a new insecticide. They run three experiments, measuring the number out of 100 that
survive at three dosages.

experiment number dosage (x) number surviving (y)
1 18 3
2 15 4
3 9 5

A highly paid statistician finds the linear regression y = 7− 0.2x.

a. Graph the data and the proposed regression line.
b. Find SSE, SST and r2.
c. Write the equation (using the data in the table) that the statistician solved to find this line.
d. Do you think that the pesticide works better at the higher dose? How would you check this statistically?

•EXERCISE 8.16

After application of a mutagen, five 100,000 base sequences of mitochondrial DNA have 24, 44, 29, 33 and
30 mutations respectively. Without mutagen, it is known that the mutation rate is 0.0002 per base.

a. Use the method of support to check whether the data are consistent with the null hypothesis.
b. Use the normal approximation to test the hypothesis that the mutagen increases the mutation rate.

What does your significance level mean?
c. How would you test the null hypothesis with the Monte Carlo method?
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•EXERCISE 8.17

The National Park Service has begun an intensive study of the elk in Yellowstone Park. As a first step,
they wish to estimate elk density. A preliminary survey locates 36 elk droppings in one square kilometer.

a. What is the sample and what is the population in this case?
b. What assumptions must you make to estimate the true density of elk droppings in the park?
c. What equations would you solve to find exact 99% confidence limits around an estimate of the density?
d. Use the normal distribution to find approximate 99% confidence limits.
e. How might you use these data to estimate the actual number of elk?

•EXERCISE 8.18

To corroborate the intensive survey, elk dropping counters walk in straight lines at exactly 2 kilometers per
hour, recording the first 10 times when they spot a dropping. The data from one surveyor are

dropping number i time since last dropping (ti)
1 0.124
2 0.056
3 0.244
4 0.227
5 0.001

dropping number i time since last dropping (ti)
6 0.118
7 0.220
8 0.014
9 0.015
10 0.016

An untrained but trustworthy assistant computes that

10∑
i=1

ti = 1.035

10∑
i=1

t2i = 0.193.

a. Sketch a graph of where the droppings are.
b. What is your best guess of the rate at which droppings are encountered?
c. Write and sketch the support function.
d. Sketch how you would use this graph to find approximate confidence limits and write the equation

you would solve to find them.
e. How might you relate these data to those in the previous problem?

•EXERCISE 8.19

In a second stage in the project, managers decide to count both elk and their droppings. In 5 different square
kilometer regions, they find

sample number i number of droppings di number of elk ei
1 39 85
2 49 101
3 49 104
4 36 78
5 51 111

a. Graph these data.
b. A mathematician proposes two lines, ei = 2di + 5 and ei = 5di + 2. Sketch them. Which line gives a

better fit to the data?
c. Find r2 for the better of the two lines.
d. Interpret the relation described by this line. Does it make sense?
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•EXERCISE 8.20

In an even more advanced study, the managers use portable scales to weigh elk inside and outside the park to
check whether they are different. They weigh 30 adult males inside the park (weights denoted by x1 . . . x30)
and 40 adult males outside (weights denoted by y1 . . . y40), all in kilograms. They compute

30∑
i=1

xi = 1.829×104

40∑
i=1

yi = 2.316×104

30∑
i=1

x2i = 1.146×107

40∑
i=1

y2i = 1.368×107

a. Find the sample mean and sample variance for each group of elk.
b. Find the standard error for each.
c. State the null hypothesis mathematically.
d. Test the null hypothesis statistically.

•EXERCISE 8.21

Having estimated numbers and weights, the managers begin working on health. They capture 40 elk and
check them for parasites. They had reported to Congress that no more than 20% of the elk in the park were
infested, but find that 13 out of their 40 are.

a. What is the probability that their report to Congress was true but they got unlucky? What does this
have to do with significance levels?

b. What would a Congressman compute if she were using the popular method of support instead?
c. Give one clever excuse the managers could give for their result. How might they argue for an expensive

follow-up study?
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Answers

8.1.

a. The number that are producing has a binomial distribution with n = 100 and p = 0.2, so the
mean is 20 and the variance is 16. The number that are absorbing has a binomial distribution
with n = 100 and p = 0.8, so the mean is 80 and the variance is 16.

b. Let P be a random variable giving the number that are producing. The number absorbing is
100− P . The rate R is

R = 2.0P − 4.0(100− P ) = 6.0P − 400.

Then E(R) = 6.0E(P )− 400 = −280 and Var(R) = 6.02Var(P ) = 576.

c. It is decreasing if R < 0 or if 6.0P − 400 < 0 or if P < 67. I would evaluate it by finding the
cumulative probability B(66; 100, 0.2).

d. Either all are producing (with probability 0.2) or all are absorbing (with probability 0.8). In
the first case, R = 200, and in the second R = −400. Then E(R) = 0.2·200+0.8·(−400) = 280
as before. But Var(R) = 57600, which is 100 times larger. The probability that the chemical
is decreasing is 0.8.

8.2.

a.

Pr(R = 1.5) = Pr(R = 1.5|T = 10) Pr(T = 10)

+ Pr(R = 1.5|T = 20) Pr(T = 20) = 0.5

Pr(R = 0.5) = Pr(R = 0.5|T = 10) Pr(T = 10)

+ Pr(R = 0.5|T = 20) Pr(T = 20) = 0.5.

The population will grow if the geometric mean is greater than 1. But

eE(ln(R)) = eln(1.5)·0.5+ln(0.5)·0.5 = 0.866.

Alternatively, the arithmetic-geometric inequality guarantees that the geometric mean is less
than 1 because the arithmetic mean is equal to 1.

b. E(R) = 1, E(T ) = 16, Var(R) = 0.25, Var(T ) = 24. The joint distribution is

R = 0.5 R = 1.5

T = 10 0.32 0.08

T = 20 0.18 0.42

1241
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Therefore,

E(RT ) = 5 · 0.32 + 15 · 0.08 + 10 · 0.18 + 30 · 0.42 = 17.2

Then Cov(R, T ) = 17.2− 1 · 16 = 1.2, and the correlation is

Cov(R, T )√
Var(R)Var(T )

=
1.2√

6
= 0.490.

8.3. Let P1 and P2 be random variables representing the fraction of shots hit by each team.
The variance is approximately 0.3 · 0.7/100 = 0.0021 for the first and 0.4 · 0.6/100 = 0.0024
for the second. Then P1 has distribution approximately N(p1, 0.0021) and P2 has distribution
approximately N(p2, 0.0024). Therefore D = P1 − P2 has distribution N(p1 − p2, 0.0045) . Under
the null hypothesis, p1 = p2, giving D distribution N(0, 0.0045). We use a one-tailed test because
we suspected that the second team was better.

Pr(D ≥ 0.1) = Pr

(
D√

0.0045
≥ 0.1√

0.0045

)
= Pr(Z ≥ 1.49) = 0.068.

This is not a significant result, meaning that this could well have happened by chance. Nonetheless,
it would be heavily interpreted by sports pundits.

8.4. The likelihood is

L(Λ) =
e−ΛΛ19

19!

e−ΛΛ25

25!
. =

e−2ΛΛ44

19! · 25!
.

This has a maximum at Λ = 22. The distribution of hits in two minutes is approximately N(44, 44).
The 98% confidence limits are

44− 2.33
√

44 = 28.5, 44 + 2.33
√

44 = 59.5.

The number of hits in one minute is half, giving confidence limits of 14.2 to 29.7.

8.5.

a. Let P (t) be the probability unbound at time t. Then P (0) = 1 and

dP

dt
= −λP

which has solution P (t) = e−λt.

b. The p.d.f. is λe−λt. Then

L(λ) = Pr(data|λ) = λe−1.5λλe−2.5λ = λ2e−4.0λ

The maximum is at λ = 0.5.

8.6.
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b. V̂ar(T ) = 0.67 and Ĉov(A, T ) = 0.33. Therefore

â =
V̂ar(T )

Ĉov(A, T )
=

0.67

0.33
= 0.5

Furthermore, Ā = 2.67 and T̄ = 2.0, so

b̂ = Ā− âT̄ = 2.67− 0.5 · 2.0 = 1.67

The regression line is Â = 0.5T + 1.67.

c.

T A Â Â−A
1 2 2.17 0.17
2 3 2.67 -0.33
3 3 3.17 0.17

8.7.
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a.

L(q) = (1− q)10
(

2q

3

)6 (q
3

)4

=
26

310
(1− q)10q6.

This is maximized at q = 0.5.

b. The likelihood function is

L2(q1, q2) = (1− q1 − q2)10q6
1q

4
2.

Taking logs, we find that the support S2(0.3, 0.2) = −20.59. With the first model S(0.5) =
−20.69. This is too small a difference to enable us to choose between the models.

8.8.

a. The mean for each problem is 17, and the variance is 21. The mean for the whole test is 136
and the variance is 168.

b. Assuming that 25 is perfect, the probability is 0.110 = 10−10.

c. Scores have approximately a N(136, 168) distribution.

Pr(S ≥ 140) = Pr

(
S − 136√

168
≥ 140− 136√

168

)
= Pr(Z ≥ 0.31) = 0.378.

The lowest score in the top 25% is 0.675 standard deviations above the mean, or 145.
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8.9.

a. The fraction has distribution

N(p̂,
p̂(1− p̂)

100
) = N(0.75, 0.001875)

where p̂ = 0.75. The 99% confidence limits are

0.75− 2.576
√

0.001875 = 0.64, 0.75 + 2.576
√

0.001875 = 0.86

b. Under the null hypothesis, the fraction P has distribution

N(0.65,
0.65(1− 0.65)

100
) = N(0.65, 0.00227).

Then

Pr(P ≥ 0.75) = Pr

(
P − 0.65√

0.00227
≥ 0.75− 0.65√

0.00227

)
= Pr(Z ≥ 2.096) = 0.018.
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I used a one-tailed test because I have faith that new drugs are better, and found a significant
result.

8.10.

a.
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b.

T H Ĥ Ĥ −H H̄ −H
10.0 12.0 11.0 1.0 3.4
12.0 13.0 13.0 0.0 2.4
14.0 15.0 15.0 0.0 0.4
16.0 17.0 17.0 0.0 -1.6
18.0 20.0 19.0 -1.0 -4.6

c. SSE = 2.0, and SST=41.2. Therefore, r2 = 1− 2
41.2 = 0.95. The line is a pretty good fit (but

not the best).

8.11.

a. The number of trout in 5 m has a Poisson distribution with Λ = 0.2 · 5 = 1. Let T represent
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the number of trout.

Pr(T ≥ 3) = 1− Pr(T ≤ 2) = 1− p(0; 1)− p(1; 1)− p(2; 1) = 0.08.

b. The expected number in 1000 m is 200; the coefficient of variation is then
√

200/200 = 0.071.

c. Multiply speed of stream by density of trout to get 0.4 trout per second.

8.12.

a. Let Ss represent the mean score of the standard class. It will have a N(µs,
25√
30

) distribution.

Let Si represent the mean score of the innovative class. It will have a N(µi,
25√
50

) distribution.

The null hypothesis is that µs = µi, or that µs − µi = 0. The distribution of D = Ss − Si is
N(0, 25√

30
+ 25√

50
) = N(0, 8.1) under the null hypothesis.

b. The difference in scores is 3.

Pr(D ≥ 3) = Pr

(
D√
8.1
≥ 3√

8.1

)
= Pr(Z ≥ 1.05) = 0.146

The significance level is 0.146, meaning there is no reason to suspect that the innovative class
really worked.

8.13. The mean of the control is 8.95 and of the treatment is 12.38. The null hypothesis is that
the treatment came from distribution N(8.95, 16/

√
10) = N(8.95, 5.06). Using a two-tailed test,

Pr(H ≥ 12.38) + Pr(H ≤ 5.52) = Pr

(
H − 8.95√

5.06
≥ 3.43√

5.06

)
+ Pr

(
H − 8.95√

5.06
≤ −3.43√

5.06

)
= Pr(Z ≥ 1.52) + Pr(Z ≤ −1.52) = 0.128.

Not significant. If I did not know the standard deviation, I would estimate it from the data, and
then use a more advanced statistics book to figure out how to test the null hypothesis.

8.14.

a. The likelihood function is L(λ) = λe−3λ. The maximum likelihood estimate is λ = 0.33.

b. For the lower limit, λl, solve Pr(T < 3|λl) = 0.025 or 1 − e−3λl = 0.025, so λl = 0.008. For
the upper limit, λh, solve Pr(T > 3|λh) = 0.025 or e−3λh = 0.025, so λh = 1.23.

c. I’d write S(λ) = ln(L(λ)), and solve for the values of λ where S(λ) = S(0.33)− 2.

d. If the wolves leave independently, which is not likely, the most likely time for the second wolf
is immediately after the first wolf. The mean time would be 3 months.

8.15.
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b.

D S Ŝ Ŝ − S S̄ − S
18.0 3.0 3.4 0.4 -1.0
15.0 4.0 4.0 0.0 0.0
9.0 5.0 5.2 0.2 1.0

Therefore, SST=2, SSE=0.2, r2 = 0.9.

c. I have no idea what this statistician did other than incorrectly analyze an inadequate data
set.

d. I’m not convinced it works. I would do more experiments.

8.16.

a. We would expect 20 mutations in each under the hypothesis that the mutagen does not work.
The likelihood is

L(Λ) =
e−ΛΛ24

24!

e−ΛΛ44

44!

e−ΛΛ29

29!

e−ΛΛ33

33!

e−ΛΛ30

30!
=

e−5ΛΛ158

24!44!29!33!30!
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and the support is

S(Λ) = −5Λ + 158 ln(Λ)− ln(24!44!29!33!30!)

The maximum likelihood estimate is 31.6, and

S(31.6)− S(20) = 14.27.

This looks like very strong support for the hypothesis that the mutagen increases mutation
rates.

b. Under the null, we would get 100 total mutations in the 5 regions. The standard deviation is
10, so our data lie 5.8 standard deviations away. This is way off the chart, but can be found
by computer to have a significance level of 3.3×10−9.

c. I would take the known mutation rate, apply it to many 500,000 base sequences, and see how
often I got 158 or more mutations.

8.17.

a. The sample is the elk droppings in one square kilometer. The population is all droppings in
the park.

b. We must assume that the density of droppings is the same throughout the park.

c. The lower confidence limit is the largest value of k for which 36 or more elk droppings are
found with probability less than 0.005. The upper confidence limit is the smallest value of k
for which 36 or fewer elk droppings are found with probability less than 0.005.

d. With a mean and variance of 36, the confidence limits are 20.54 to 51.45.

e. Too disgusting to think about. Figure out number of droppings per elk, and how long they
last.

8.18.
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b. 0.966 per minute.

c. S(λ) = 10 ln(λ)− 10λ · 1.036.
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d. I would solve S(λ) = S(0.966)− 2.0.

e. Would have to figure out how fast people walked, and how wide an area they observe.

8.19.
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b. The first line gives a better fit.

c. SST=758.8, and SSE=26.0, so r2 = 0.966.

d. The slope means that there is 1 elk for every 2 droppings. But I don’t know what the 5 is
for.

8.20.

a. X̄ = 609.7 with sample variance 10661. Ȳ = 772.0 with sample variance 27602.

b. The standard errors are 18.8 for X and 13.2 for Y .

c. The null hypothesis is that X̄ = Ȳ .

d. The means differ by 30.7. This is less than the total of the two standard errors, and is not
significant.

8.21.

a. The probability of 13 or more is 0.0432. The value of p = 0.2 would lie just inside the 95%
confidence limit (which allows for an error of 0.025.
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b. The support for p = 13/40 is -25.22 and the support for p = 0.2 is -26.95. This is within 2,
so p = 0.2 is reasonably well-supported by the data.

c. It might be easier to capture infected elk. They need to try different trapping methods and
compare the results.


