Modeling the Dynamics of Life: Calculus and Probability for Life Scientists

Frederick R. Adler $^{\rm 1}$

©Frederick R. Adler, 2011

¹Department of Mathematics and Department of Biology, University of Utah, Salt Lake City, Utah 84112

382

2.11 Supplementary Problems for Chapter 2

 \blacklozenge Find the limits of the following functions or say why you can't.

• EXERCISE 2.1 $\lim_{x \to 0} 1 + x^2.$ • EXERCISE 2.2 $\lim_{x \to -2} 1 + x^2$. • EXERCISE 2.3 $\lim_{x \to 1} \frac{1}{x^2 - 1}.$ • EXERCISE **2.4** $\lim_{x \to 0} \frac{e^x}{1 + e^{2x}}.$ • EXERCISE 2.5 $\lim_{x \to 1^+} \frac{1}{x-1}.$ • EXERCISE **2.6** $\lim_{x \to 1^{-}} 1/(x-1).$ • Find the derivatives of the following functions. Note any points where the derivative does not exist. • EXERCISE 2.7 $F(y) = y^4 + 5y^2 - 1.$ • EXERCISE 2.8 $a(x) = 4x^7 + 7x^4 - 28.$ • EXERCISE 2.9 $H(c) = \frac{c^2}{1+2c}.$ • EXERCISE **2.10** $h(z) = \frac{z}{1 + \ln(z^2)}$ for $z \ge 0$. • EXERCISE 2.11 For $y \ge 0$, $b(y) = \frac{1}{y^{0.75}}$. • EXERCISE 2.12 For $z \ge 0$, $c(z) = \frac{z}{(1+z)(2+z)}$. Find the derivatives of the following functions • EXERCISE 2.13 $g(x) = (4 + 5x^2)^6.$ • EXERCISE 2.14 $c(x) = (1 + \frac{2}{x})^5.$ • EXERCISE 2.15 $s(t) = \ln(2t^3).$ • EXERCISE 2.16 $p(t) = t^2 e^{2t}.$ • EXERCISE 2.17 $s(x) = e^{-3x+1} + 5\ln(3x).$ • EXERCISE 2.18 $g(y) = e^{3y^3 + 2y^2 + y}.$ ♠ Find the derivatives and other requested quantities for the following functions. • EXERCISE 2.19

 $f(t) = e^t \cos(t)$. Find one critical point.

• EXERCISE 2.20

 $g(x) = \ln(1 + x^2)$. Find one point where g(x) is decreasing.

• EXERCISE 2.21

 $h(y) = \frac{1-y}{(1+y)^3}$. Find all values where h is increasing. • EXERCISE **2.22**

 $c(z) = \frac{e^{2z} - 1}{z}$. What is c(0)? (You need to take the limit).

• Find all critical points and points of inflection of the following. Sketch graphs.

• EXERCISE 2.23 $f(x) = e^{-x^3}.$ • EXERCISE 2.24

 $q(x) = e^{-x^4}.$

• EXERCISE 2.25

 $h(y) = \cos(y) + \frac{y}{2}.$

• EXERCISE 2.26

 $F(c) = e^{-2c} + e^c.$

♠ Solve the following.

• EXERCISE 2.27

A population has size

 $N(t) = 1000 + 10t^2.$

where t is measured in years.

- a. What units should follow the 1000 and the 10?
- **b.** Graph the population between t = 0 and t = 10.
- c. Find the population after 7 yr and 8 yr. Find the approximate growth rate between these two times. Where does this approximate growth rate appear on your graph?
- **d.** Find and graph the derivative N'(t).
- e. Find the per capita rate of growth. Is it increasing?

• EXERCISE 2.28

Suppose the volume of a cell is described by the function $V(t) = 2 - 2t + t^2$ where t is measured in minutes and V is measured in 1000's of μm^3 .

- **a.** Graph the secant line from time t = 2 to t = 2.5.
- **b.** Find the equation of this line.
- c. Find the value of the derivative at t = 2, and express it in both differential and prime notation. Don't forget the units.
- **d.** What is happening to cell volume at time t = 2?
- e. Graph the derivative of V as a function of time.

• EXERCISE 2.29

Suppose a machine is invented to measure the amount of knowledge in a student's head in units called "factoids". One student is measured at $F(t) = t^3 - 6t^2 + 9t$ factoids at time t, where t is measured in weeks.

- a. Find the rate at which the student is gaining (or losing) knowledge as a function of time (be sure to give the units).
- **b.** During what time between t = 0 and 11 is the student losing knowledge?
- **c.** Sketch a graph of the function F(t).

• EXERCISE 2.30

The following measurements are made of a plant's height in centimeters and its rate of growth.

Day	Height	Growth rate
1	8.0	5.2
2	15.0	9.4
3	28.0	17.8
4	53.0	34.6

- **a.** Graph these data. Make sure to give units.
- **b.** Write the equation of a secant line connecting two of these data points and use it to guess the height on day 5. Why did you pick the points you did?
- c. Write the equation of a tangent line and use it to guess the height on day 5.
- **d.** Which guess do you think is better?
- e. How do you think the "growth rate" might have been measured?

• EXERCISE 2.31

Suppose the fraction of mutants in a population follows the discrete-time dynamical system

$$p_{t+1} = \frac{2.0p_t}{2.0p_t + 1.5(1-p_t)}$$

Suppose you wish the fraction at time t = 1 to be close to $p_1 = 0.4$.

- **a.** What would p_0 have to be to hit 0.4 exactly?
- **b.** How close would p_0 have to be to this value to produce p_1 within 0.1 of the target?
- c. What happens to the input tolerance as the output tolerance becomes smaller (as p_1 is required to be closer and closer to 0.4)?

• EXERCISE **2.32**

Suppose the position of an object attached to a spring is

$$x(t) = 2.0 \cos\left(\frac{2\pi t}{3.2}\right).$$

- **a.** Find the derivative of x(t). What does it mean physically?
- **b.** Find the second derivative of x(t). What does this mean physically?
- **c.** What is the position and velocity at t = 0?
- **d.** What is the position and velocity at t = 1.6?
- e. What is the position and velocity at t = 3.2?
- f. What differential equation does this object follow?

• EXERCISE **2.33**

Suppose a system exhibits hysteresis. While increasing the temperature T, the voltage response follows

$$V_i(T) = \begin{cases} T & \text{if } T \le 50\\ 100 & \text{if } 50 < T \le 100 \end{cases}$$

While decreasing the temperature, however, the voltage response follows

$$V_d(T) = \begin{cases} T & \text{if } T \le 20\\ 100 & \text{if } 20 < T \le 100 \end{cases}$$

a. Graph these functions.

- **b.** Find the left and right hand limits of V_i and V_d as T approaches 50.
- c. Find the left and right hand limits of V_i and V_d as T approaches 20.

• EXERCISE **2.34**

Suppose the total product generated by a chemical reaction is

$$P(t) = \frac{t}{1+2t}$$

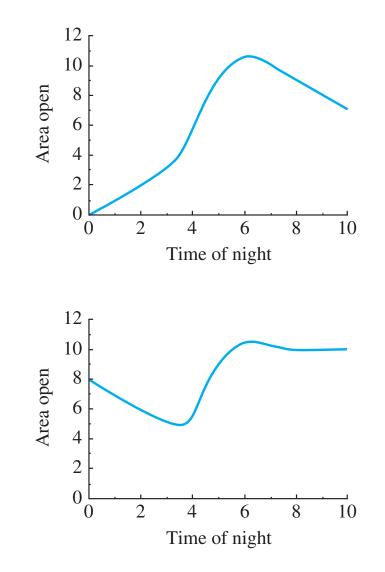
where t is measured in hours.

- **a.** Find the average rate of change between t = 1 and t = 2.
- **b.** Find the equation of the secant line between these times.

2.11. SUPPLEMENTARY PROBLEMS FOR CHAPTER 2

- **c.** Graph the secant line and the function P(t).
- **d.** Sketch a graph of the tangent line at t = 2. Based on your graph, is the slope of the secant larger, smaller, or the same as the slope of the tangent?
- e. Write the limit you would take to find the instantaneous rate of change at t = 2.
- ♠ In each of the following cases, suppose a window is described by the graph. Time is measured in time after going to sleep at 10:00 p.m., and the area open is in square feet. In each case,
 - a. Label a point where the first derivative is positive and the second derivative is negative,
 - **b.** Label a point of inflection,
 - **c.** Sketch a graph of the rate of change,
 - d. Sketch a graph of the second derivative.

 $\bullet \text{EXERCISE} \ \textbf{2.35}$



Chapter 9

Answers

- **2.1.** We can plug in because the function is continuous. The limit is 1.
- **2.2.** We can plug in and the limit is 5.
- **2.3.** This increases to infinity.
- **2.4.** The limit is 0.5.
- **2.5.** This increases to infinity.
- **2.6.** This decreases to negative infinity.
- **2.7.** This is a polynomial, so we can use the sum and power rules to find $F'(y) = 4y^3 + 10y$.
- **2.8.** This is a polynomial, so we can use the sum and power rules to find $a'(x) = 28x^6 + 28x^3$.

2.9. This is a quotient of $u(c) = c^2$ and v(c) = 1 + 2c with derivatives u'(c) = 2c and v'(c) = 2. By the quotient rule $H'(c) = \frac{(1+2c)2c - 2c^2}{(1+2c)^2} = \frac{2c(1+c)}{(1+2c)^2}$. This is only defined when $c \neq -1/2$. **2.10.** This is a quotient of u(z) = z and $v(z) = 1 + \ln(z^2) = 1 + 2\ln(z)$ (from the laws of logs) with derivatives u'(z) = 1 and v'(z) = 2/z. By the quotient rule

$$h'(z) = \frac{1 + 2\ln(z) - z \cdot 2/z}{(1 + \ln(z^2))^2} = \frac{2\ln(z) - 1}{(1 + \ln(z^2))^2}.$$

2.11. This is a power function with power p = -0.75, so $b'(y) = -0.75y^{-1.75}$ for $y \ge 0$. **2.12.** This is a quotient of u(z) = z and v(z) = (1+z)(2+z). The derivatives are u'(z) = 1 and v'(z) = 3 + 2z (using the product rule or multiplying out). Then

$$c'(z) = \frac{(1+z)(2+z) - z(3+2z)}{(1+z)^2(2+z)^2} = \frac{2-z^2}{(1+z)^2(2+z)^2}$$

2.13. This is a composition g(x) = f(h(x)) where $h(x) = 4 + 5x^2$ and $f(h) = h^6$ with derivatives h'(x) = 10x and $f'(h) = 6h^5$. Therefore, $g'(x) = 10x \cdot 6h(x)^5 = 60x(4 + 5x^2)^5$.

2.14. This is a composition c(x) = f(g(x)) where g(x) = 1 + 2/x and $f(g) = g^5$ with derivatives $g'(4) = -2/x^2$ and $f'(g) = 5g^4$. Therefore, $c'(x) = -10(1 + \frac{2}{x})^4/x^2$.

2.15. Expanding with the laws of logs gives $s(t) = \ln(2) + 3\ln(t)$ with derivative s'(t) = 3/t.

2.16. This is a product of $f(t) = t^2$ and $g(t) = e^{2t}$. Because f'(t) = 2t and $g'(t) = 2e^{2t}$, we have that $p'(t) = f'(t)g(t) + g'(t)f(t) = (2t^2 + 2t)e^{2t}$.

2.17. This can be broken down with the sum rule. The first term is the composition f(g(x)) with g(x) = -3x + 1 and $f(g) = e^g$ with derivatives g'(x) = -3 and $f'(g) = e^g$. Therefore

$$\frac{d}{dx}e^{-3x+1} = -3e^g = -3e^{-3x+1}.$$

The second term can be rewritten as $5\ln(3x) = 5\ln(3) + 5\ln(x)$ with derivative 5/x. Therefore $s'(x) = -3e^{-3x+1} + 5/x$.

2.18. This is the composition F(G(y)) with $G(y) = 3y^3 + 2y^2 + y$ and $F(G) = e^G$ with derivatives $G'(y) = 9y^2 + 4y + 1$ and $F'(G) = e^G$. Therefore $g'(y) = F'(G)G'(y) = (9y^2 + 4y + 1)e^{3y^3 + 2y^2 + y}$. **2.19.** This function is the production of $u(t) = e^t$ and $v(t) = \cos(t)$. Then $u'(t) = e^t$ and v'(t) = -sin(t), so $f'(t) = u'(t)v(t) + v'(t)u(t) = (\cos(t) - \sin(t))e^t$. To find a critical point we must solve f'(t) = 0, which occurs when $\cos(t) - \sin(t) = 0$ or $\cos(t) = \sin(t)$. Because $\cos(\pi/4) = \sin(\pi/4) = \frac{\sqrt{2}}{2}$, the point $t = \pi/4$ is a critical point.

2.20. This is the composition f(h(x)) with $f(h) = \ln(h)$ and $h(x) = 1 + x^2$. Because f'(h) = 1/h and h'(x) = 2x, we have that $g'(x) = f'(h)h'(x) = \frac{2x}{1+x^2}$. g(x) is decreasing when this derivative is negative. Because the denominator $1 + x^2$ is always positive, this occurs when x < 0.

2.21. This is the quotient of u(y) = 1 - y and $v(y) = (1 + y)^3$ with derivatives u'(y) = -1 and $v'(y) = 3(1 + y)^2$. By the quotient rule,

$$h'(y) = \frac{-(1+y)^3 - 3(1-y)(1+y)^3}{(1+y)^6} = \frac{2(y-2)}{(1+y)^4}.$$

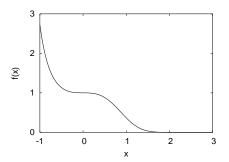
h(y) is increasing this is positive. Because the denominator is always positive, this occurs when the numerator is positive, or y > 2.

2.22. This is a quotient of $u(z) = e^{2x} - 1$ and v(z) = z with derivatives $u'(z) = 2e^{2x}$ and v'(z) = 1. Therefore,

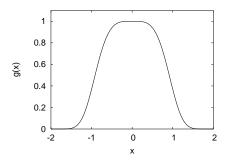
$$c'(z) = \frac{e^{2z} - 1 - 2ze^{2z}}{z^2}.$$

c(z) is the slope of the secant line to the function $f(z) = e^{2z}$ connecting the point (0, 1) to the point (z, f(z)). The limit is $f'(0) = 2e^{2 \cdot 0} = 2$. This could also be found with L'Hopital's rule.

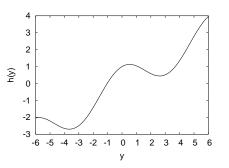
2.23. $f'(x) = -3x^2e^{-x^3}$ which is 0 at x = 0. $f''(x) = (9x^4 - 6x)e^{-x^3}$ which is 0 at x = 0 and x = 0.873.



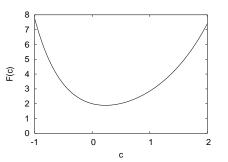
2.24. $g'(x) = -4x^3 e^{-x^4}$ which is 0 at x = 0. $g''(x) = (16x^6 - 12x^2)e^{-x^4}$ which is 0 at x = 0 and $x = \pm 0.931$.



2.25. $h'(y) = -\sin(y) + \frac{1}{2}$ which is 0 at $y = \frac{\pi}{6} + 2n\pi$ and $y = \frac{t\pi}{6} + 2n\pi$ for any integer n. $h''(y) = -\cos(y)$, which is 0 at $y = \frac{\pi}{2} + n\pi$ for any integer n.

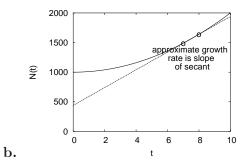


2.26. $F'(c) = -2e^{-2c} + e^c$ which is 0 where $c = \ln(2)/3$. $F''(c) = 4e^{-2c} + e^c$ which is always positive. There are no points of inflection.

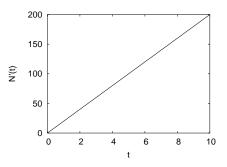


2.27.

a. The 1000 has units of individuals, and the 10 has units of individuals/ yr^2 .

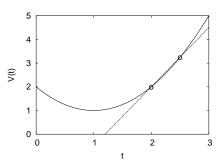


- c. The population is 1490 after 7 yr and 1640 after 8 yr. The approximate growth rate is 150 during this year.
- **d.** The derivative is 20*t*.



e. The per capita rate of growth is $\frac{20t}{(1000+10t^2)}$. It starts at 0 and increases for a while. Eventually, however, it will decrease.

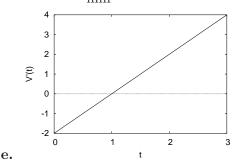
2.28.



- **b.** The secant line has slope (V(2.5) V(2))/0.5 = 2.5. Because V(2) = 2, the equation is $V_s(t) = 2.5(t-2) + 2.$

a.

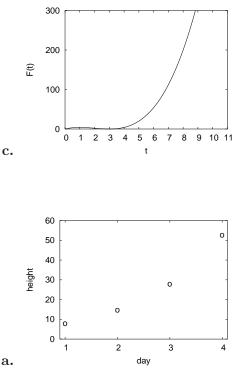
c. V'(t) = 2t - 2, so V'(2) = 2 in units of $\frac{\mu m}{\min}$ **d.** At t = 2, cell volume is increasing by $2\frac{\mu m}{\min}$.

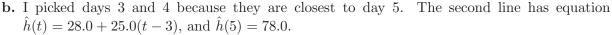


2.29.

a. $F'(t) = 3t^2 - 12t + 9$ is the derivative, with units of factoids per week.

b. With the quadratic formula, we find that F'(t) = 0 when t = 1 or t = 3. Because F'(t) is a parabola with goes up, it must be negative between times 1 and 3. This is the time when knowledge is being lost.





- **c.** On day 4, the tangent line is $\hat{h}(t) = 53.0 + 34.6(t-4)$, and $\hat{h}(5) = 77.6$.
- d. Probably the tangent line because it uses the latest information.
- e. Maybe they went out and measured the change in plant height over one hour.

2.31.

a. $p_0 = 0.333$.

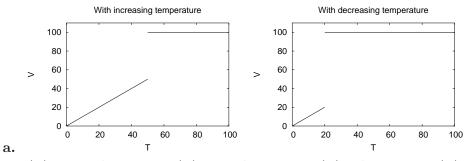
- **b.** p_0 would have to be between 0.243 and 0.428, or within about 0.1.
- c. It would get smaller and smaller also.

2.32.

- **a.** $x'(t) = -1.25\pi \sin(\frac{2\pi t}{3.2})$. This is the velocity v(t).
- **b.** $x''(t) = -0.78\pi^2 \cos(\frac{2\pi t}{32})$. This is the acceleration a(t).
- c. At t = 0, the position is x = 2 and the velocity is 0.
- **d.** At t = 1, the position is x(1) = -0.765 and the velocity is v(1) = -3.628.
- e. At t = 2, the position is x(2) = -1.414 and the velocity is v(2) = 2.777.
- f. $\frac{d^2x}{dt^2} = -3.855x(t).$

2.33.

2.30.



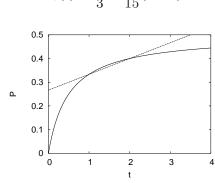
b. $\lim_{T\to 50^+} V_i(T) = 100$. $\lim_{T\to 50^-} V_i(T) = 50$. $\lim_{T\to 50^+} V_d(T) = \lim_{T\to 50^-} V_d(T) = 100$. **c.** $\lim_{T \to 20^+} V_i(T) = \lim_{T \to 20^-} V_i(T) = 20$. $\lim_{T \to 20^+} V_d(T) = 100$. $\lim_{T \to 20^-} V_d(T) = 20$.

2.34.

a. The average rate of change is

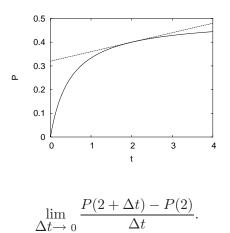
$$\frac{\Delta P}{\Delta t} = \frac{P(2) - P(1)}{2 - 1} = \frac{2/5 - 1/3}{1} = 1/15.$$

b. The secant line passes through the point (1, 1/3) with slope 1/15, and has equation

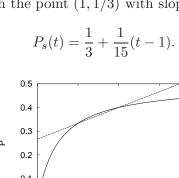


d. I'd say it is less steep because the curve gets less and less steep for larger values of t.

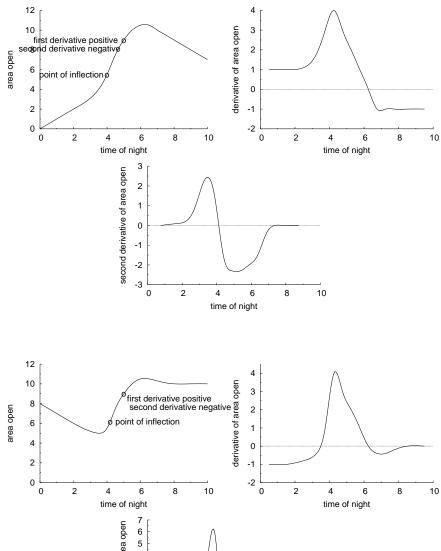
c.

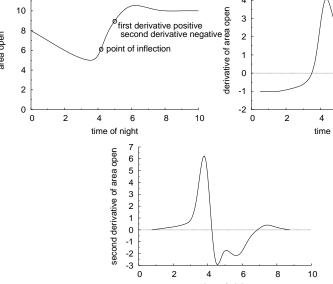


e.



2.36.





time of night