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A GENERAL TEST FOR INTERACTION MODIFICATION!

FREDERICK R. ADLER? AND WILLIAM F. MORRIS?
Center for Population Biology, University of California, Davis, California 95616 USA

Abstract.

How can measurements of population dynamics be used to deduce the

mechanisms of interaction in an assemblage of species? We present a technique to use such
measurements to distinguish among assemblages of species with no direct interactions, sets
of species influenced predominantly by pairwise interactions, and communities with sig-
nificant interaction modification. We define the interaction coefficients and show that their
dependence on the population sizes of the various species reveals and pinpoints interactions.
Our technique distinguishes non-additivity in the statistical sense from interaction mod-

ification in the biological sense.
Key words:

INTRODUCTION

The population dynamics of a species can depend
on many factors, including abiotic influences, resource
levels, the population sizes of the species with which
it interacts, and the mode of such interactions. When
species interactions are important, they can take many
forms, as described by Billick and Case (1994) and
Wootton (1994). Of concern here are three types of
interaction described in detail by Billick and Case
(1994): indirect interactions mediated through known
or unknown resources, a series of direct, pairwise in-
teractions determined solely by population size, and
direct pairwise interactions modified by the presence
or density of other species (interaction modifications).
To distinguish among these alternatives is to distin-
guish among very different views of communities,
ranging from assemblages of species with no direct
interactions, to sets of species involved only in pairwise
interactions that operate more or less independently,
to complex webs of action and reaction involving mul-
tiple species simultaneously. From a practical view-
point, determining whether interaction modifications
(IM) exist is a critical first step in teasing apart com-
munity dynamics: in their absence, a series of exper-
iments that include all possible pairs of species in the
community would in principle suffice to predict the
trajectory of the entire species ensemble. However,
when IM operate, experiments must determine not only
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the rates of interactions between all species pairs, but
how those rates are altered by additional species in the
community.

Many interactions or processes that in theory could
influence population dynamics in practice fail to pro-
duce measurable effects upon population dynamics.
Consequently, while it may be easy to call attention to
the theoretical importance of higher order interactions
(HOI) (Abrams 1987), there remains an essential need
for specific tests that can determine whether HOI are
of sufficient magnitude to emerge above the din of
multiple processes occurring simultaneously in real
communities. If HOI are important, their neglect can
lead to serious misunderstanding of particular com-
munities. Conversely, if HOI are unimportant, re-
search focused on them might distract us from other
potential determinants of community dynamics.

Our purpose here is to discuss methods for testing
whether interaction modifications lurk within a given
ecological data set. We are particularly concerned with
approaches that would enable the empiricist to distin-
guish simple non-additivity in the statistical sense from
higher order interaction and interaction modification
(IM) in the biological sense. Using explicit models, we
propose a test for interaction modification that gen-
eralizes and reinterprets a criterion proposed by Abrams
(1983), and discuss the advantages and limitations of
applying this test to ecological data.

NoN-ADDITIVITY DOES NoT IMPLY
INTERACTION MODIFICATION

The simplest model of a community described by a
sequence of pairwise interactions is one in which the
per capita reproductive and death rates of individuals
can be expressed as a sum of effects by other species.
A non-additive model is, then, one which includes
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multiplicative terms that depend on more than one
species. We here show that the presence of such mul-
tiplicative terms reveals nothing about the presence of
IM.

We first discuss a model in which multiplicative terms
do imply the existence of IM. Consider the three-tro-
phic-level system described by Huang and Sih (1991),
in which sunfish prey upon both isopods and isopod-
eating larval salamanders. Addition of sunfish to a
community consisting of isopods and salamanders could
act additively to increase isopod mortality, or could
diminish isopod mortality in two different ways: by
depleting the salamander population through preda-
tion (an indirect effect), or by inducing salamanders to
change behavior and become less efficient as isopod
predators (IM).

Over the short times considered in their experiment,
sunfish numbers remained constant, and there was no
reproduction of salamanders or isopods (Huang and
Sih 1991). A simple Lotka-Volterra model of the in-
teraction in the context of this experiment (cf. Levin
et al. 1977) needs to include only the three predation
terms, and can be written

1dL

Ta~ %

1dI

——=—-bS —cL, 1
13 bS — ¢ €))

where S, L, and I are the densities of sunfish, larval
salamanders, and isopods. The left hand sides give net
per capita death rates, where a represents the predation
rate of sunfish on salamanders, b the predation rate of
sunfish on isopods, and ¢ the predation rate of sala-
manders on isopods. We assume there is no other source
of mortality.

Any interaction modification in this system must be
mediated through the various predation rates. For sim-
plicity, we focus on the term ¢ for predation of sala-
manders on isopods. If this rate is constant, or is a
function only of L, the per capita death rate of isopods
is an additive function of the densities of other species.
In this case, the model would pass the test for the
absence of HOI proposed by Case and Bender (1981)
and further discussed by Billick and Case (1994), namely
that the per capita growth rate of a species in a three-
species mixture must equal the sum of that species’
growth rate in the two possible two-species mixtures
minus its growth rate in isolation. For example, from
the perspective of isopods, the following equality holds:

[isopod [isopod [isopod

death death in death in [isopod
rate in 3 = presence + presence of — death in
species of sunfish  salamanders isolation]
mixture] only] only]

or

[-aS — cL]=[—aS — ¢ x 0)]
+ [—a x 0 —cL] — [0l )

Now suppose that sunfish modify the interaction be-
tween salamanders and isopods. To model this situa-
tion, we replace ¢ with c,e~S to indicate that the attack
rate of salamanders on isopods declines as sunfish be-
come more abundant and salamanders spend more
time in refuges. In this case, Eq. 2 no longer holds,
because

[—aS — c,e™"SL] # [—aS — c,e="S x 0]
+ [—a X 0 — cpe*°L] — [0]
= —aS$ — ¢,L.

Because the reduction in salamander predation on iso-
pods in the presence of sunfish introduces a non-ad-
ditive term into an additive model, the Case and Bend-
er test for higher order interactions was able to detect
the interaction modification.

In contrast, consider a model in which species affect
one another in a multiplicative fashion, but the rate of
interaction between any pair of species is unaltered by
the densities of other species in the community. Sup-
pose a number of plant species compete for light, and
that the species are numbered in order of increasing
height, so that species j shades species i only if j > i.
If plant species j allows only a proportion e-%" of
available light to pass through its canopy, where N;is
the population size of species j, the proportion of light
available to an average plant will be

H e,

J>i

Assuming that L is the total incident light and that
growth is proportional to available light, the per capita
growth rate for each species will be

1 dN,
—— =L —ajN;
Noa e 3)

where 7; is the amount of plant biomass produced by
species I per unit of available light. Because all inter-
actions are mediated through a single resource, and the
rate at which each species utilizes that resource is in-
dependent of the densities of other species, there is no
interaction modification. The Case and Bender test,
however, fails, as

[growth rate  [growth rate  [growth rate

of species of species of species lgrowth
. . ) rate of
lin lin lin —  species
competition ~ competition = competition pl in
with species with with . .
2 and 3] species 2] species 3] isolation]
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Instead, we have the equation:

[growth rate  [growth rate  [growth rate [growth
of species of species of species rate of
lin _ lin lin +  species
competition  competition = competition .
with species with with lin
2 and 3] species 2] species 3] isolation]

which is a multiplicative model of interaction.

These examples indicate that a test for IM must do
more than test for non-additivity in per capita growth
rates.

A GENERAL TEST FOR
INTERACTION MODIFICATIONS

Competition coefficients (Schoener 1974) have been
used to describe pairwise interactions in communities
of competitors. Such coefficients are defined as the ef-
fect one species has on the per capita growth rate of a
second species relative to the effect the second has on
itself. Abrams (1983) equated higher order interactions
with the presence of a functional dependence of these
coefficients on the population size of a third species.
Our test is similar, but is designed to identify inter-
action modifications.

Suppose we have a general system of equations

1,

=F(N,, ...
N,' dt 1( 1>

> N 4)
describing the dynamics of m interacting species. (Al-
though we illustrate the test with a differential equation
model, it applies equally well to difference equation
formulations.) The effect of species j on species i can
be described by what we term an “interaction coeffi-
cient” (denoted 8;), defined as the effect an added in-
dividual of species j has on the per capita growth rate
of species i. That is,

ﬁuzFx(Nlaajvj+ 15'--’Nm)
_FJ(ND'-*a]vja"-:Nm)
oF;
~—L 5
o 5)

Note that the usual competition coefficient «;; is equal
to B;/B-

The absence of IM is characterized by the absence
of dependence of the interaction coefficient 8; on char-
acteristics of species other than i and j. Formally, this
means

ﬁij = Gij(Fia N, N_/) (6)

for each B;, where the function G, can take any form
as long as the effect on species i of adding a new in-
dividual of species j depends only on the current growth
rate and the population sizes of the two species under

consideration. This test generalizes those of Case and
Bender (1981) and Abrams (1983), producing a more
stringent criterion for the absence of IM. Case and
Bender (1981) define the absence of higher order in-
teractions as dependence of the interaction coefficient
B; on N, only, which is equivalent to the requirement
that the per capita growth rate of each species be a sum
of terms describing the effects of the other species.
Billick and Case (1994) note that the Case and Bender
test is based on a more general model in which the
interaction coefficients can depend on both N; and N,.
This parallels Abrams’ (1983) definition of HOI in the
competitive case as dependence of the competition co-
efficient &; on factors other than N, and N,. These cri-
teria correspond to the broader class of population dy-
namic models in which the per capita growth rate of
a species can be expressed as a sum of terms describing
its pairwise interactions with other species.

As pointed out by Billick and Case (1994), popula-
tion size may not provide a complete description of
the state of a population, and apparent higher order
effects may be due to unmeasured structure. In addi-
tion, they show that the dynamics of unmeasured re-
sources can produce spurious positive results in tests
for higher order effects. To partially obviate this prob-
lem, we allow the interaction coefficient to depend on
the population growth rate. The growth rate can act as
a surrogate for the level of a limiting resource in certain
cases (Appendix). This additional functional depen-
dence breaks the restriction to the additive model form,
and the test is able to reject the presence of interaction
modification in the multiplicative “competition for
light”” model, as we demonstrate below. Furthermore,
the form of the functional dependence of the interac-
tion coefficients on the growth rate identifies the struc-
ture of the interaction (see Appendix and Table 1).

This test can be used to examine each interaction in
the system separately, because dependence of §; on N,
indicates that species k modifies the effect of species j
on species i. The Case and Bender test, on the other
hand, can only show that there is some higher order
interaction affecting the per capita growth of species i,
without pinpointing the specific interaction. For ex-
ample, our test can identify when an intraspecific in-
teraction involving species i is modified by species k
by checking whether 8, depends on N,.

The general test we have proposed is able to detect
the modification of the rates of interspecific interaction
in both models discussed above. For the aquatic food
web model (Eq. 1), the interaction coefficient describ-
ing the effect of salamanders on isopods is the term c.
If ¢ depends on isopod numbers (through a functional
response by the salamanders), salamander numbers
(through some direct interference among salamanders),
or is constant, the test indicates the absence of inter-
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TaBLE 1. Some standard models and their analysis using the method of interaction coefficients.

Continuous-time models

1 dN

Growth rate F, = —— ) ) M
Model ro rate v N dt Interaction coefficient present?
) —ra;
Lotka-Volterra F=r <1 - M) B;= Y = constant no
i i K, KI
= — : X —aiN; = — X
Competition for light F,=rLI, e-M By _ G(aIf,rsL .. &k, no
One prey/two predators
kP, k,P, dF, k;
Fy=r~— == _ -GN
Prey (V) TN+ D, N+D, v =3p, = "N+ D, W™ no
mN oF, m,D,
F, = - = t=—n—— =GN
Predators (P,, P,) "=NTD, 1 Be,n aN ~ (N + D) (V) no
aFPl =
Be,.p, aP, no
Two prey/one predator
kP IFy ky
Fo =p— —"2©° =M __ "
Prey (V.. V) MTTTNTT N, 4D, Bvr =3P = N TN, 7D,
Fy +
=L = G(Fy, P) no
P
oF,,
ﬁNl,N2 = N,
_ kP
(N, + N, + D))
= G(N,, N,, P) yes
kN, k,N, oF,
Fp= -5 =—L=GW, N.
Predator (P) P N, + N, + D, N, +N,+D, ﬁP,Nl 3N, (N1, V) yes
Discrete-time models
Nt + 1) M
wth rate Fy = ————— .
Model Gro rate Lu N Interaction coefficient present?
Ricker competition F; = r;exp(—Z,a;N)) Bi; = — ayr; exp(—Z,a;N))
= —aF, = G(F) no
Hassell-Comins . N V= By = —biar(l + Z,aN)=b"
competition Fi=rl + ZaN) = — by oF} 14 = G(F) no
action modification, because the interaction coefficient By = —arL H e~ = —qF, (7

can be expressed in terms just of the population sizes
of the interacting species. However, if the sunfish mod-
ify the interaction between salamanders and isopods,
the interaction coefficient is equal to c,e~>5, which can-
not be rewritten as a function of L, I, and the sala-
mander growth rate alone.

In the “competition for light” model (Eq. 3), we have
that

J>i

which satisfies our requirement for the absence of IM.
However, unlike the aquatic food web model, the in-
teraction coefficient is not constant, but depends lin-
early on the growth rate. This form is characteristic of
multiplicative models of resource-mediated competi-
tion.
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TESTING FOR INTERACTION MODIFICATIONS
IN EcoLoGICAL DATA

While it is not difficult to see how the general test
we have proposed can be applied to mathematical
models of multi-species interactions (one takes a par-
tial derivative), it is more difficult to see how it can be
used to uncover interaction modifications in ecological
data obtained from field or laboratory studies. We see
three methods of testing for IM, each with its own
strengths and weaknesses. We illustrate these three
‘techniques using the data of Huang and Sih (1991),
and simulation of two models of competition among
three species.

1) Direct observation of species interactions: The most
straightforward method of detecting interaction mod-
ifications is to directly observe the interaction between
individuals of two species in the presence and absence
of a third species and determine if that particular in-
teraction is sensitive to the density of the third species.
For example, Huang and Sih (1991) show directly that
salamanders spend more time in refuges, and thus less
time foraging for isopods, when they are exposed to
predatory sunfish. The advantage of this approach is
directness. The disadvantage is that direct observation
may not be feasible or that the appropriate behaviors
may not be evident a priori. For example, behavioral
interactions whose rates are slow may not be compat-
ible with the time scale of most observational studies.
Other interactions may not be directly observable. Fur-
thermore, behavioral observations must be carried out
over a relatively short time interval to prevent indirect
effects (changes in interactions mediated entirely
through population size) from being confounded with
IM (Billick and Case 1994). Huang and Sih (1991)
addressed this problem by creating a third treatment
that substituted the smell of fish for the fish themselves.
The salamanders responded behaviorally to these
chemicals in much the same way that they responded
to fish, and the small decrease in isopod predation
could be attributed entirely to this response. However,
such experimental separation of the behavioral re-
sponse (interaction modification) from the population
dynamic response (indirect effect) may not always be
possible.

2) Guessing the right model form: Our examples sug-
gest a second way to establish the absence of IM in a
given community. One could employ the partial de-
rivative test to identify a model that lacks IM, and then
ask whether it is able to predict the population data.
We have argued that the Case and Bender test falls into
this category, testing whether data deviate from a par-
ticular, though very general, additive form. The diffi-
culty comes in choosing the right model structure. Fail-
ure of data to fit a model might erroneously suggest

the presence of IM, when in fact what was discovered
was simply the choice of an inappropriate model.
With the data of Huang and Sih (1991) one plausible
model is the Lotka-Volterra model presented in Eq. 1.
In this case, the partial derivative test coincides with
the Case and Bender test. For example, the effect of
larval salamanders on isopods, can be estimated as

B, 0,0) = F(I, L, 0) — F,(I, 0, 0)
in the absence of sunfish, and as

8.1, 0,8) = F(I, L, S) — F(I, 0, S)

in the presence of sunfish. Then we have that §,, is
independent of S if

B, 0,0) =B, 0, S),
or
FI(I’ L, O) - FI(I’ 0) 0) = FI(I’ L, S) - FI(I’ Oa S),

which is precisely the Case and Bender test. For ex-
ample, with the data in Huang and Sih (1991), we can
estimate F, as the average number of isopod deaths
over the course of the experiment. They found that
F,(I,0,0)= 10, F,(I, L, 0) = 125, F(1, 0,5) = 60, F,(1,
L, S) =70, so B, is =115 in the absence of sunfish,
and only 10 in their presence. That is, sunfish greatly
decrease the effect of larval salamanders on isopods.

If the test proposed in Eq. 6 is to prove practical at
detecting IM in real data sets, we must be confident
that we can pick up the distinguishing signature of IM
when a known underlying model operates against a
stochastic background. To consider a case different from
the additive case, we simulated three species in the
competition for light model given in Eq. 3, and the
Hassell and Comins competition model (Hassell and
Comins 1976) given in Table 1, adding stochastic noise
to the model parameters and the initial population
sizes in both cases. In order to apply our test, more
than two levels of some species must be considered.
We consider four densities (0, 1, 2, and 3) of species 2
and 3, and focus on their effects on a single density (1)
of species 1.

In the simulation of the competition for light model,
we set all parameters ( and a) to be equal to 1.0, with
normally distributed noise of standard deviation of 0.2
chosen independently in each of 5 replicates in the 16
treatments. Additionally, we assumed normally dis-
tributed measurement error of the initial sizes, with
the same standard deviation. The simulation was run
for a time of 0.2, which corresponds to =22% growth.
Growth rate was calculated as final size minus initial
size. In the simulation of the Hassell and Comins dis-
crete model, we set the growth parameter r to be 2.0,
and the competition coefficients to be 0.5 with standard
deviation of 0.2 chosen independently in each of 5
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Hassell and Comins model

2
17 . y = 1.1535 - 0.97515x r = 0.531
L
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=
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o s :
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(4] -1 °
©
3
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£
-2 T .
0 1 2
Population size of species 3
F1G. 1. Results of simulation of the competition for light

model (Eq. 3). Parameter values are listed in Testing for in-
teraction modifications . . . : 2) Guessing the right model form.
The top panel shows the regression of the interaction coeffi-
cient 38,, against the growth rate of species 1, and the bottom
panel shows the relationship of the interaction coefficient 8,,
to the population size of species 3.

replicates in the 16 treatments. Measurement error was
simulated as in the competition for light. The param-
eter b was set to 0.5, and we ran the model for a single
interaction. Growth rate was calculated as final size
divided by initial size.

In each case, we calculated the interaction coefficient
as a finite difference between per capita growth rates;
for example 8,,(1, 2, 2) = F\(1, 3, 2) — F,(1, 2, 2). We
treated each replicate as a block. The results for 3,, are
shown in Figs. 1 and 2. In each case, the growth rate
explains the majority of the variance, with the popu-
lation size of species 3 showing little effect. Analysis
of covariance shows that there is no effect of either
species 2 or 3 on interaction coefficient when the growth
rate is taken into account. This indicates that both
models are effectively models for competition for a
single resource (Appendix). However, the expected cu-
bic relationship of the interaction coefficient to the
growth rate for the Hassell-Comins model with » = 0.5

(see Table 1) cannot be discerned with the large amount
of noise in the simulation. This suggests that our test
may be relatively robust at detecting general relation-
ships of the interaction coefficients, but may not be
able to uncover the intricate details of an interaction
as embodied in the exact functional form of a model.

3) Using nonparametric regression: Given the prob-
lems inherent in choosing an appropriate model, direct
testing for dependence of the interaction coefficients
on the population sizes of other species would be ideal.
One more or less model-free approach would be to fit
the interaction coefficients with a nonparametric re-
gression using as predictors different subsets of the
measured population sizes and growth rates (see Eu-
bank [1988] for an introduction to nonparametric re-
gression techniques). If no additional information were
gained by using the population sizes of other species
once the population sizes and growth rates of the in-

Competition for light model

2
417 y = -0.071373 - 1.0928x r = 0.570

Interaction coefficient

-2 -1 0 1 2 3
Growth rate
41
L od
c
2 . .
L] [ J
3 : :
] ]
e ¢ ' '
] .
° . y
S 2]
[1] . .
L
£
-4 T —
0 1 2

Population size of species 3

Fic. 2. Results of simulation of the Hassell-Comins com-
petition model (Table 1). Parameter values are listed in Test-
ing for interaction modifications . . . : 2) Guessing the right
model form. The top panel shows the regression of the inter-
action coefficient 8,, against the growth rate of species 1, and
the bottom panel shows the relationship of the interaction
coefficient 8,, to the population size of species 3.
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teracting species were used, a strong argument could
be made for the absence of IM. Conversely, if the pop-
ulation size of some third species provided significant
information about a particular pairwise interaction,
one would have evidence for IM, and an indication of
how a particular interaction had been modified. Not
surprisingly, a test with this level of generality requires
a very large data set, perhaps of the order of 1000
points. The theory of such tests is still preliminary,
however, and the development of feasible tests with
more limited goals might be possible.

WHY TEST FOR INTERACTION MODIFICATIONS
WHEN WE KNow THEY
Must BE COMMON?

Almost any realistic model of an ecological inter-
action includes interaction modifications. For exam-
ple, the interaction between a predator and a particular
prey species is modified by the presence of another
prey species when the predator has any saturating func-
tional response (Table 1; Abrams 1987), and numerous
modifications of prey behavior in response to preda-
tion have been observed (Lima and Dill 1990). But
how important should we expect these nearly ubiqui-
tous effects to be for the actual dynamics of popula-
tions? Just as the dynamics of some species can be
accurately predicted by ignoring all interactions and
pretending that all processes are density independent,
one can expect that population dynamics in many sys-
tems can be accurately predicted by ignoring HOI and
pretending that all interactions are pairwise. Our more
general test for interaction modification is more strin-
gent than that of Case and Bender and can point the
way in specific circumstances to a pairwise model suit-
able for describing data even when an additive model

fails. Only by avoiding the unthinking use of familiar -

and mathematically convenient models and by having
the discipline to ignore interesting but dynamically un-
important interactions, can we ever hope to develop
predictive ecological theory.
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APPENDIX
and

We here show that the interaction coefficients produced by
a competitive interaction mediated entirely through a single
abiotic resource depend only on the growth rates of the com-
peting species. An abiotic resource has been defined to be one
which responds instantaneously to the abundances of the spe-
cies eating it (Armstrong and McGehee 1980). Such resources
cannot produce indirect effects because they have no “mem-
ory.” Although it is not necessary, we simplify the compu-
tation by requiring the interaction to be “mechanistically re-
source-mediated” in the sense that resource depletion depends
only on resource levels. This implies that the resource level
must be a function of a weighted sum of the population sizes
of the competing species (Adler 1990). Note that the Lotka-
Volterra, competition for light, Ricker, and Hassell-Comins
models all fall into this class.

We thus suppose that the per capita growth rate of species
i depends only on the level of some resource R, or that

F(N, N,.) = h(R)

That is, the growth rate of species i depends only on some
resource, which can always be considered to be a weighted
sum of population sizes. We assume that 4, is a decreasing
function of R; i.e., that this is a competitive interaction. In
this case, we can write

R = h7\(F).

The interaction coefficients then depend only on the growth
rate, because

dF,
L= _l = N ! = I. ,_l .
=3 N, @' (R) = ah' (hi ' (F)),

where ' denotes differentiation.



