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Question : What can one say about H∗Aut(Fn)?

H1 and H2 are known: both are Z2 for large enough n . (Nielsen, Gersten)

HiAut(Fn) is finitely generated for all i,n . (Culler–Vogtmann)

Stability: Aut(Fn)֓ Aut(Fn+1) induces HiAut(Fn) ≅ HiAut(Fn+1) for n >

2i+ 1. (H–V 1998)

Hi(Aut(Fn);Q) = 0 for 1 ≤ i ≤ 6 except H4(Aut(F4);Q) ≅ Q . (H–V 1998)

Conjecture : H̃stab∗ (Aut(Fn);Q) = 0

Hstab∗ Aut(Fn) ≅ H
stab
∗ Σn ⊕ (?) . (from Waldhausen theory)

Stronger Conjecture : Hstab∗ Aut(Fn) ≅ H
stab
∗ Σn

Proved by Soren Galatius in 2006.

Remark. Hstab∗ (Σn;Zp) computed by Nakaoka (1961) — it is large.

Galatius’ method: Scanning, following Madsen-Weiss (much simplified).

The scanning method shows Hstab∗ Aut(Fn) ≅ H∗(Ω∞0 S∞)
where Ω∞0 S∞ = basepoint component of Ω∞S∞ = ∪nΩnSn

Then apply Barrett–Kahn–Priddy Theorem (ca. 1970): Hstab∗ Σn ≅ H∗(Ω∞0 S∞)
(Provable by scanning, easy 0-dimensional case.)



The Scanning Method

Given: a sequence of groups G1 ⊂ G2 ⊂ · · · that are “automorphism groups” of

certain geometric objects.

Goal: compute Hstabi Gn = Hi(∪nGn) (not assuming stability)

3 Main Steps:

1. Construct BGn as a space of these geometric objects embedded in R
∞
= ∪NR

N .

2. Scan to get a spectrum (infinite loopspace) with homology isomorphic to Hstab∗ (Gn) .

3. Identify the spectrum with something nice, preferably known.

The scanning method works for:

Σn and variants, e.g., wreath products G ≀ Σn

MCGs of surfaces and variants, e.g., stabilize both genus and punctures

Aut(Fn) and variants, e.g., Aut(G ∗ Fn relG) for some groups G

MCGs of 3-dimensional handlebodies and variants

Diff(#nS
1
× S2)

What else?

Also:

Hstab∗ Bn ≅ H∗(Ω2
0S

2) (F. Cohen)

K(Z, n) = free abelian group generated by Sn (Dold–Thom)

Sketch steps 1–3 for Galatius’ theorem

Step 1

Let G
N
= space of finite graphs embedded in RN :

smooth edges, linear near vertices

graphs need not be connected, empty graph allowed

vertices of valence 0, 1, 2 allowed

Topology on G
N : neighborhood of a given graph consists of graphs obtained by



small isotopy and conical expansion of vertices to trees:

Disjoint cones, possibly nested, disjoint from the graph except at the vertex.

Translate each cone and everything inside it along the axis of the cone, away from

the vertex. The translated vertices of the cones become the new vertices.

(Some differences between G
N and Galatius’ space of graphs.)

Then π0G
N
= homotopy types of finite graphs for N ≥ 4.

Let G
∞
= ∪NG

N .

Let G
∞
n = component of connected rank n graphs: π1 = Fn .

Fact 1: G
∞
n ≃ BOut(Fn) .

Main ingredient in proof: contractibility of Outer Space.

Compare with Igusa theorem: Classifying space of category of rank n finite

graphs with morphisms tree collapses is BOut(Fn) .

Similarly: basepointed version of G
∞
n ≃ BAut(Fn) , using graphs with a basepoint

vertex at the origin.

Step 2

Enlarge G
N to a space G

N,N by allowing noncompact graphs extending to infinity in

R
N , but properly embedded. In particular, edges can extend to infinity.

Topology: neighborhood of a given graph consists of graphs which are close in

a finite ball B , and transverse to ∂B . (Similar to the compact-open topology on

function spaces.)

This allows graphs to be pushed to infinity, by pushing radially outward from any



point in the complement.

Hence the enlarged space G
N,N is connected.

In fact G
N,N

≃ SN . (This is Step 3.)

Galatius filtration of G
N,N :

Let G
N,k

= subspace of G
N,N consisting of graphs in Rk × IN−k , i.e., graphs that

can extend to infinity in k directions.

G
N
≃ G

N,0
⊂ G

N,1
⊂ · · · ⊂ G

N,N

Natural map G
N,k→ΩG

N,k+1 , translate from −∞ to +∞ in (k+1)st coordinate. Get

a loop based at the empty graph.

Compose:

G
N,0→ΩG

N,1→Ω2
G
N,2→ · · ·→ΩNG

N,N , translate in all directions.

Can rescale graphs in G
N,N to the part lying in a small disk around 0, the germ at

0.

Combined with G
N,0→ΩNG

N,N this is scanning: Moving a magnifying lens over all

of RN , scanning an entire graph.

Fact 2.1: G
N,k→ΩG

N,k+1 is a homotopy equivalence when k > 0.

Sketch proof:

Product in G
N,k when k < N : juxtaposition in (k + 1)st coordinate, then rescale,

like composition of loops. Can be improved to be associative — a monoid — like

Moore loopspace:

M
N,k

=
{
(Γ , a) ∈ G

N,k
× [0,∞)

∣∣ Γ ⊂ Rk × [0, a]× IN−k−1 }



Then M
N,k

≃ G
N,k .

Claim: G
N,k+1

≃ BM
N,k

To prove this, consider the subspace

G
N,k+1
s ⊂ G

N,k+1 consisting of split

graphs: disjoint from at least one slice

R
k
× {a} × IN−k−1 . G

N,k+1
s ≃ G

N,k+1

if k > 0 by pushing radially to ∞ in

R
k
× {a} from some point in the com-

plement of a given graph. Do this in

many slices independently. Combine

by partition of unity.

Furthermore G
N,k+1
s ≃ BM

N,k by sliding the first and last pieces to ±∞ . (Just look

at the definition of a classifying space.)

Thus G
N,k+1

≃ BM
N,k .

Hence ΩG
N,k+1

≃ ΩBM
N,k

≃M
N,k since π0M

N,k
= 0 for k > 0 — easy argument.

≃ G
N,k ⊔⊓

k = 0 : Is G
N,0→ΩG

N,1 a homotopy equivalence? No, since π0ΩG
N,1 is a group

but π0G
N,0

≅ π0M
N,0 is only a monoid. (Other differences: components of G

N,0

have different nonabelian π1 ’s, unlike ΩG
N,1 .)

Want to apply the Group Completion Theorem (ca. 1970) to get a stable homology

equivalence instead.

New M
N,0 : monoid M

N consisting of

pairs (Γ , a) with Γ a finite connected graph

in [0, a] × IN−1 containing the base line

[0, a] × {0} . (This follows the later paper

of Galatius and Randal–Williams on MCGs,

rather than Galatius’ original paper.)



Only need the case N = ∞ .

M
∞
=
∐
nM

∞
n for M

∞
n = component with rank n graphs.

M
∞
n ≃ BAut(Fn) as in Step 1.

Fact 2.2: G
∞,1

≃ BM
∞ .

Proof outline.

Add baseline:

Connect other components to baseline:

Split:

Do this splitting in many slices independently. Combine by partition of unity. Slide

first and last pieces to ±∞ as before. Get G
∞,1

≃ BM
∞ . ⊔⊓



The Group Completion Theorem gives a homology isomorphism

H∗(Z× lim
n

M
∞
n ) ≅ H∗(ΩBM

∞)

Thus
H∗(Z× lim

n
BAut(Fn)) ≅ H∗(ΩBM

∞)

≅ H∗(ΩG
∞,1) by Fact 2.2

≅ H∗(ΩkG∞,k) for all k > 1 by Fact 2.1

≅ H∗(Ω∞G
∞,∞)

Taking one component, Hstab∗ Aut(Fn) ≅ H∗(Ω∞0 G
∞,∞) . End of Step 2.

Step 3

Fact 3: G
N,N

≃ SN

Hence Hstab∗ Aut(Fn) ≅ H∗(Ω∞0 S∞)

Idea: Rescale to a small ball about the origin to get a finite linear tree in a ball.

Technical point: special scanning lens needed for continuity:

Then shrink trees to their centerpoints.

The space of graphs with at most one point is SN , the one-point compactification

of RN .

This finishes Galatius’ theorem.



The Barratt–Kahn–Priddy Theorem

This follows the same plan but is much easier. Take G
N to be the space of 0-dimensional

graphs in RN , so G
∞
n = BΣn .

Again get G
N,N

≃ SN . This is why Hstab∗ Aut(Fn) ≅ H
stab
∗ Σn .

The Madsen-Weiss Theorem

Take G
N
= space of smooth compact surfaces in R

N .

Step 1: Diff(Sg) has contractible components (g >1) so MCG(Sg) ≃ Diff(Sg) .

Thom: BDiff(Sg) = space of embedded Sg ⊂ R
∞ .

Step 2: very similar to the Aut(Fn) case. One extra step needed for G
N,1

≃ ΩG
N,2 .

Step 3: G
N,N

≃ space of oriented affine 2-planes in R
N . (Easy)

Handlebody Mapping Class Groups

Let Vn = 3-dimensional handlebody of genus n .

MCG(Vn)→Out(Fn) is surjective. Large kernel.

MCG(Vn)→MCG(∂Vn) is injective.

H∗MCG(Vn) stabilizes (Hatcher–Wahl 2007)

Theorem Hstab∗ MCG(Vn) ≅ H∗(Ω∞0 S∞BSO(3)+) .
The “+” denotes adding a disjoint basepoint and gives Hstab∗ Out(Fn) as a summand

of Hstab∗ MCG(Vn) .

Corollary Hstab∗ (MCG(Vn);Q) ≅ Q[x4, x8, · · ·] .

This is “half” of Hstab∗ (MCG(∂Vn);Q) ≅ Q[x2, x4, x6, x8, · · ·] .

Remark: Ω∞S∞BSO(d)+ is the spectrum that arises when one scans general d -

dimensional manifolds with boundary (Josh Genauer).

Idea of proof: Handlebodies are 3-dimensional thickenings of graphs, so enhance

graphs with 3-dimensional tangential data.



Let G
N
= space of 3-plane graphs: graphs Γ in R

N as before, with a choice, at each

point x ∈ Γ , of an oriented 3-plane Px containing the tangent lines to the edges of

Γ that contain x .

Step 1: G
∞
n ≃ BMCG(Vn) for n > 1. Uses 3-manifold facts:

Diff(Vn) has contractible components for n > 1, so Diff(Vn) ≃ MCG(Vn) .

The space of handle structures on Vn is contractible.

Step 2: Only minor modifications from the Aut(Fn) case.

Step 3: Also only minor modifications from the Aut(Fn) case. Get G
N,N

≃ one-

point compactification of the space of pairs (P,x) where P is an oriented affine

3-plane in RN and x is a point in P .

This is the Thom space of the trivial N -plane bundle over the Grassmann man-

ifold GrN,3 of oriented 3-planes in RN , or equivalently, the N -fold suspension

SN(GrN,3+ ) . Let N→∞ to get Gr∞,3+ = BSO(3)+ .

Steps 2 and 3 work in higher dimensions as well. With a modified Step 1, one can

prove:

Theorem Hstab∗ BDiff(#nS
1
× S2) ≅ H∗(Ω∞0 S∞BSO(4)+) .

Idea: View #nS
1
× S2 as the boundary of a 4-dimensional handlebody.

Diff(#nS
1
× S2) does not have contractible components, so no statement about

MCG.

Homology stability for BDiff(#nS
1
× S2) is unknown.


