Strata and stabilizers of trees

Vincent Guirardel Joint work with G. Levitt

Institut de Mathématiques de Toulouse

Vincent Guirardel, Toulouse

Strata and stabilizers of trees

Goal of the talk

Outer space $\mathrm{CV}_{\mathit{N}}=\big\{\text{minimal free actions of }\mathbb{F}_{\mathit{N}}\text{ on simplicial trees}\big\}/\sim.$

Compactification $\overline{\mathrm{CV}}_{\mathit{N}} = \{ \text{minimal } \mathit{very } \mathit{small } \text{actions on } \mathbb{R}\text{-trees} \} / \sim.$

Main example: action with trivial arc stabilizers.

Goal

Given $T \in \overline{\mathrm{CV}}_N$, find some structure that more or less parallels the strata of a relative train track map.

Goal of the talk An example Admissible subtrees Stabilizers Stabilizers Proof

Goal of the talk

Outer space $\mathrm{CV}_{\mathcal{N}}=\{$ minimal free actions of $\mathbb{F}_{\mathcal{N}}$ on simplicial trees $\}/\sim$.

Compactification $\overline{\mathrm{CV}}_{\mathit{N}} = \{ \text{minimal } \textit{very small } \text{actions on } \mathbb{R}\text{-trees} \}/\sim.$

Main example: action with trivial arc stabilizers.

Goal

Given $T \in \overline{\mathrm{CV}}_N$, find some structure that more or less parallels the strata of a relative train track map.

Applications

Give some kind of decomposition of any $T \in \overline{\mathrm{CV}}_N$ into simple building blocks.

Understand the stabilizer of T in $Out(\mathbb{F}_N)$.

 α automorphism of $\langle a, b, c, d \rangle$:

```
\alpha: \begin{cases} a & \mapsto ab \\ b & \mapsto bab \end{cases}
```

 α automorphism of $\langle a, b, c, d \rangle$:

$$\alpha: \begin{cases} c & \mapsto d \\ d & \mapsto cad \\ a & \mapsto ab \\ b & \mapsto bab \end{cases}$$

f the talk An example Admissible subtrees Stabilizers Stabilizers Proof

An example

 α automorphism of $\langle a, b, c, d \rangle$:

successive images of d:

CaC

 $d_{\tt ab} c_{\tt a} d$

CadabbabdabCad

dabCadabbabbabbabbabCadabbabdabCad

 $d_{\theta} c_{\theta} d_{\theta} c_{\theta} d_{\theta} c_{\theta} d_{\theta} c_{\theta} d_{\theta} c_{\theta} d_{\theta} c_{\theta} c_{\theta$

 α automorphism of $\langle a, b, c, d \rangle$:

$$\alpha: \begin{cases} c & \mapsto d \\ d & \mapsto cad \\ a & \mapsto ab \\ b & \mapsto bab \end{cases}$$

 α automorphism of $\langle a, b, c, d \rangle$:

$$\alpha: \begin{cases} c & \mapsto d \\ d & \mapsto cad \\ a & \mapsto ab \\ b & \mapsto bab \end{cases}$$

successive images of the path d, rescaled by 2.6^k

Tree interpretation: axis of the element d on $\frac{1}{2.6^k}T.\alpha^k$.

At the limit: F_N acts on some \mathbb{R} -tree T_{∞} .

Tree interpretation: axis of the element d on $\frac{1}{2.6^k}T.\alpha^k$.

At the limit: F_N acts on some \mathbb{R} -tree T_{∞} .

Facts

- T_{∞} is α -invariant: there exists an α -equivariant homothety $H_{\alpha}: T_{\infty} \to T_{\infty}$
- $\langle a, b \rangle$ preserves a subtree $Y \subset T_{\infty}$, Y is H_{α} -invariant.
- Y is closed and disjoint from its translates

One can collapse Y equivariantly and get a topological \mathbb{R} -tree, with an action of F_N :

$$Y \hookrightarrow T_{\infty} \twoheadrightarrow T/Y$$

Other description of the collapsed tree: $T/Y = \overline{T}_{\infty}$.

Collapse all red edges before taking limit:

Theorem [G-Levitt]

Any $T \in \overline{\mathrm{CV}}_N$ can be obtained from simplicial trees and *mixing* trees by iterating two constructions:

- extensions $Y \hookrightarrow T \twoheadrightarrow T/Y$
- graph of actions

Mixing: minimality condition \Rightarrow every orbits meets every segment in a dense set.

Graph of actions = Free amalgamated product of actions on \mathbb{R} -trees, glued along points.

Theorem [G-Levitt]

Any $T \in \overline{\mathrm{CV}}_N$ can be obtained from simplicial trees and *mixing* trees by iterating two constructions:

- extensions $Y \hookrightarrow T \twoheadrightarrow T/Y$
- graph of actions

Remark: this obliges to consider topological \mathbb{R} -trees, with (non-nesting) actions by homeomorphisms. If mixing, such topological actions have an invariant metric.

of the talk An example **Admissible subtrees** Stabilizers Stabilizers Proof

Admissible subtrees

To simplify, assume T has no simplicial arc (branch points are dense), arc stabilizers are trivial.

Definition

A subtree $Y \subset T$ is admissible if Y is not a point and any two distinct translates of Y are disjoint.

f the talk An example **Admissible subtrees** Stabilizers Stabilizers Proof

Admissible subtrees

To simplify, assume T has no simplicial arc (branch points are dense), arc stabilizers are trivial.

Definition

A subtree $Y \subset T$ is admissible if Y is not a point and any two distinct translates of Y are disjoint.

Example 1. $Y \subset T_{\infty}$ above.

Admissible subtrees

To simplify, assume T has no simplicial arc (branch points are dense), arc stabilizers are trivial.

Definition

A subtree $Y \subset T$ is admissible if Y is not a point and any two distinct translates of Y are disjoint.

Example 1. $Y \subset T_{\infty}$ above.

Example 2. If T is simplicial, Y admissible $\Leftrightarrow Y$ subgraph of groups

$$A_0 *_{C_1} A_1 *_{C_2} A_2$$

Admissible subtrees

To simplify, assume T has no simplicial arc (branch points are dense), arc stabilizers are trivial.

Definition

A subtree $Y \subset T$ is admissible if Y is not a point and any two distinct translates of Y are disjoint.

Example 1. $Y \subset T_{\infty}$ above.

Example 2. If T is simplicial, Y admissible $\Leftrightarrow Y$ subgraph of groups

$$A_0 *_{C_1} A_1 *_{C_2} A_2$$

Example 3. T is mixing if and only if it has no admissible subtree.

talk An example Admissible subtrees **Stabilizers** Stabilizers Proof

Main finiteness result

Main finiteness result [G-Levitt]

There are only finitely many orbits of admissible subtrees $Y \subset T$.

For each admissible Y, ∂Y consists of finitely many orbits.

An example Admissible subtrees Stabilizers Stabilizers Proof

Main finiteness result

Main finiteness result [G-Levitt]

There are only finitely many orbits of admissible subtrees $Y \subset T$.

For each admissible Y, ∂Y consists of finitely many orbits.

Next goal

Use this theorem to understand the $Out(F_N)$ -stabilizer of T.

Projective stabilizer $\operatorname{Aut}([T]) =$ set of $\alpha \in \operatorname{Aut}(F_N)$ s.t. $\exists \alpha$ -equivariant homothety $H_\alpha : T \to T$.

Isometric stabilizer: Aut(T) =

set of $\alpha \in \operatorname{Aut}(F_N)$ s.t. $\exists \alpha$ -equivariant isometry $H_\alpha : T \to T$.

 $\operatorname{Out}([T])$ and $\operatorname{Out}(T)$ = their images in $\operatorname{Out}(F_N)$.

An example Admissible subtrees Stabilizers Stabilizers Proof

Stabilizer of a simplicial tree

 Γ a graph of groups, $\mathcal{T}=\tilde{\Gamma}$ Bass-Serre tree.

General facts:

- $\ \, \mathbf{Out}_0(\tilde{\Gamma}) \subset \mathbf{Out}(\tilde{\Gamma}) \text{ finite index subgroup acting trivially on } \Gamma.$
- ② There is a map $\rho: \operatorname{Out}_0(\tilde{\Gamma}) \to \prod_{\nu} \operatorname{Out}(G_{\nu})$
- **1** Dehn twists are in the kernel of ρ
- Elements of $\operatorname{Out}(G_{\nu})$ which act like a conjugation on each edge group are in the image of ρ

Def: McCool group

Fix $\{E_1, \ldots E_n\}$ some subgroups in free group F_k . The set of automorphisms $\alpha \in \operatorname{Out}(F_k)$ acting like a conjugation on each E_i is a McCool group.

Theorem (G-Levitt)

Fix $T \in \overline{\mathrm{CV}}_N$.

• $\operatorname{Out}(T)$ has a finite index subgroup $\operatorname{Out}_0(T)$ s.t.

$$1 \to \prod \textit{free groups} \to \operatorname{Out}_0(\textit{T}) \to \prod \textit{McCool gps} \to 1$$

• The set of scaling factors of $\mathrm{Out}([T])$ is a cyclic subgroup of \mathbb{R}_+^* [Lustig]

Remark: the McCool groups are McCool groups of point stabilizers. The free groups correspond to Dehn twists.

Proposition

McCool groups virtually have a finite classifying space.

Corollary

So does the stabilizer of T in $Out(F_N)$.

Proof

Idea: construct a simplicial tree $\tilde{\Gamma}$ on which $\mathrm{Out}(\mathcal{T})$ acts.

- **1** All automorphisms α in some finite index subgroup of $\operatorname{Out}_0(T) \subset \operatorname{Out}(T)$ are *piecewise-F_N*.
- ② $\operatorname{Out}_0(T)$ is *uniformly* piecewise- F_N : there exists a piecewise decomposition of T that is compatible with every $\alpha \in \operatorname{Out}_0(T)$.
- **3** There is a simplicial tree $\tilde{\Gamma}$ dual to this piecewise decomposition
- $\operatorname{Out}_0(T)$ occurs as an extension of McCool groups by Dehn twists in Γ .

