Definable and negligible subsets of free groups

(in honor of Karen Vogtmann's 60th birthday)

joint with Mladen Bestvina

Luminy, June 23, 2010

OUTLINE

- 1. Extension Problems
- 2. Definable Subsets of \mathbb{F}
- 3. Negligible Sets and the Conjecture
- 4. Shortest Failures
- 5. The Conjecture for E-sets

1. EXTENSION PROBLEMS

- \bullet \mathbb{F} is non-abelian free group with finite basis B.
- All groups are fg.

Problem 1 (0-quantifier). Describe $Hom(P, \mathbb{F})$.

Example. If P is a rank n free group, then $Hom(P, \mathbb{F}) \cong \mathbb{F}^n$.

Problem 1 was solved by Myasnikov-Kharlampovich, Sela. Later we describe a solution.

Problem 2 (*E*-**Problem**). Given $i: P \to H$ and finite subset $\overrightarrow{\eta}$ of H, describe the set of homomorphisms $p: P \to \mathbb{F}$ that admit an extension h to H killing no $\eta \in \overrightarrow{\eta}$.

 $E := \{ p \in Hom(P, \mathbb{F}) \mid \exists h \text{ such that } h(\eta) \neq 1 \text{ for } \eta \in \overrightarrow{\eta} \}$

Example. If P = H and $\overrightarrow{\eta} = \emptyset$ then $E = Hom(P, \mathbb{F})$.

Example. If $1 \in \overrightarrow{\eta}$ then $E = \emptyset$.

Problem 3 (AE-**Problem).** Given $P \xrightarrow{i} H \xrightarrow{j} G$ and finite subset $\overrightarrow{\gamma}$ of G, describe the set AE of p with that property that all extensions h admit a further extension g killing no $\gamma \in \overrightarrow{\gamma}$.

ullet The most general AE-problem allows finitely many $j: H \to G_j$, but we will ignore this for this talk.

EAE-Problem, AEAE-Problem, . . .

2. DEFINABLE SUBSETS OF $\mathbb F$

- A *definable set* is a subset of $Hom(P, \mathbb{F})$ that is in the Boolean algebra generated by EAE...-sets.
- We restrict to the case $P = \mathbb{Z}$ and so $Hom(P, \mathbb{F})$ is identified with \mathbb{F} . Hence, we consider definable subsets of \mathbb{F} .
- ullet We have seen \emptyset and $\mathbb F$ are definable. Our goal is to show that up to some equivalence these are the only examples.

Theorem (Sela). The Boolean algebra generated by AE-sets contains all definable sets.

3. NEGLIGIBLE SETS AND THE CONJECTURE

- \bullet \mathbb{F} is a free group with finite basis B.
- ullet A *piece* of a word $w \in \mathbb{F}$ is a non-trivial subword that appears in two different ways.

Example. • ab is a piece of abcBA

- a^2 is a piece of a^3
- a^3 is not a piece of a^3

• A subset N of \mathbb{F} is *negligible* if there is $\epsilon > 0$ such that all but finitely many $w \in N$ have a piece with relative length $\geq \epsilon$, i.e.

$$\frac{length(piece)}{length(w)} \ge \epsilon$$

Complements of negligible sets are co-negligible.

Example. • Finite sets are negligible and subsets of negligible sets are negligible.

• $\{ba^i \mid i \in \mathbb{N}\}$ is negligible. (Any $0 < \epsilon < 1$ works.)

Conjecture. Definable subsets of \mathbb{F} are negligible or co-negligible.

• A sequence $\{w_i\}$ in \mathbb{F} is a *test sequence* if the relative lengths of pieces of w_i goes to 0.

Example. \mathbb{F} contains the test sequence $\{baba^2ba^3\cdots ba^ib\}_i$. More generally, a set containing a coset of a non-abelian subgroup of \mathbb{F} contains a test sequence.

- ullet A subset of $\mathbb F$ is negligible iff it doesn't contain a test sequence.
- The set Prim of primitive elements of \mathbb{F} is neither negligible nor co-negligible if $rank(\mathbb{F}) > 2$. (If $B = \{a,b,c\}$ then Prim contains $c\langle a,b\rangle$ and the complement of Prim contains $\langle [a,b],c[a,b]C\rangle$.) ($\stackrel{Conj}{\Longrightarrow}$ Rips-Sela question.)
- ullet A proper non-abelian subgroup of $\mathbb F$ is neither negligible nor co-negligible. ($\stackrel{Conj}{\Longrightarrow}$ Mal'cev question.)

4. SHORTEST FAILURES

• Our approach to the conjecture is via *shortest failures*. We give an example of this technique in a solution to Problem 1.

Problem 1. Describe $Hom(H, \mathbb{F})$.

- H is a *limit group* if for all finite subsets $\overrightarrow{\eta}$ of H there is $h: H \to \mathbb{F}$ that is injective on $\overrightarrow{\eta}$.
- A factor set of H is a finite set $\overrightarrow{q} = \{q : H \to H_q\}$ of proper epimorphisms.

• $h: H \to \mathbb{F}$ factors through \overrightarrow{q} if there is $q \in \overrightarrow{q}$ such that h factors through q.

- H is not a limit group iff there is a factor set $\overrightarrow{q} = \{q : H \to H_q\}$ for H such that all $h : H \to \mathbb{F}$ factor through \overrightarrow{q} .
- ullet With a little extra work, we may take each H_q to be a limit group.
- h factors through \overrightarrow{q} up to twisting if there is $a \in Aut(H)$ such that $h \circ a$ factors through \overrightarrow{q} .

Theorem (Kharlampovich-Myasnikov, Sela). Suppose H is not free. Then there is a factor set $\overrightarrow{q} = \{q : H \to H_q\}$ such that all $h : H \to \mathbb{F}$ factor through \overrightarrow{q} up to twisting. Further, we may take each H_q to be a limit group.

Idea of Proof*. • We may assume H is a limit group.

- Let η_1, η_2, \ldots be an enumeration of the non-trivial elements of H. Let \overrightarrow{q}_i be the factor set $\{H/\eta_1, \ldots, H/\eta_i\}$.
- Let h_i be a shortest failure to the statement for \overrightarrow{q}_i where the length of h_i is the sum of the lengths in \mathbb{F} of the images of a generators for H.

^{*}details can be found in our paper Notes on Sela's work.

- $h: H \to \mathbb{F}$ gives an action T_h of H on the Cayley graph (tree) $T_{\mathbb{F}}$ of \mathbb{F} .
- \bullet The projectivized space of real H-trees is compact (Culler-Morgan).
- $T_H = \lim T_{h_i}$ is faithful.
- There is a structure theory for faithful T_H -trees of this type. In particular, there is $a \in Aut(H)$ such that $|h_i \circ a| < |h_i|$ for $i \gg 0$ (Shortening).
- So $h_i \circ a$ and hence h_i factors through \overrightarrow{q}_i up to twisting, contradiction.

Theorem (Sela). (Limit group induction) A sequence of epimorphisms between limit groups stabilizes.

5. THE CONJECTURE FOR E-SETS

 \bullet To see where negligibility arises, we give the idea of the proof of the conjecture in a special case. Recall the definition of E.

$$H$$
 $\downarrow \qquad \exists h, h(\eta) \neq 1, \eta \in \overrightarrow{\eta}$
 $P \cong \mathbb{Z} \xrightarrow{p} \mathbb{F}$

Proposition. Either E is negligible or it contains $\mathbb{F} \setminus \{1\}$.

Idea of Proof. Suppose $\{p_i\}$ is a test sequence in E. Let h_i be a shortest extension of p_i . $T_H = \lim T_{h_i}$.

- If T_H is not faithful, then h_i factors through a quotient H_q for large i and we are done by limit group induction. $(E(P \to H_q)$ contains the same test sequence.)
- ullet For convenience, suppose T_H is simplicial with trivial edge stabilizers. Consider $T_P/P \to T_H/H$.

• If the image misses an edge then H = A * B with $i(P) \subset A$. It follows that h_i is not shortest for large i. (In particular, P is not elliptic in T_H .)

• Conclude $H = P * H_0$ and this case is an exercise.