Outer space and the work of Karen Vogtmann

$Out(F_n)$

 $F_n = \langle a_1, a_2, \cdots, a_n \rangle$ is the free group of rank n.

$$Out(F_n) = Aut(F_n)/Inn(F_n)$$

- contains MCG(S) for punctured surfaces S
- ▶ maps to $GL_n(\mathbb{Z})$

The study of mapping class groups and arithmetic groups is an inspiration in the study of $Out(F_n)$.

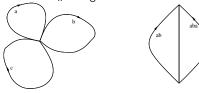
Theorem (Nielsen, 1924)

Aut(F_n) (and Out(F_n)) are finitely presented. A generating set consists of the automorphisms σ : $a_1 \mapsto a_1 a_2$, $a_i \mapsto a_i$ for i > 1 plus the signed permutations of the a_i 's.

Outer space

Definition

- ▶ graph: finite 1-dimensional cell complex Γ, all vertices have valence ≥ 3.
- rose $R = R_n$: wedge of *n* circles.

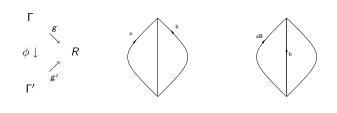


- marking: homotopy equivalence $g: \Gamma \rightarrow R$.
- metric on Γ: assignment of positive lengths to the edges of Γ so that the sum is 1.

Outer space

Definition (Culler-Vogtmann, 1986)

Outer space X_n is the space of equivalence classes of marked metric graphs (g, Γ) where $(g, \Gamma) \sim (g', \Gamma')$ if there is an isometry $\phi : \Gamma \to \Gamma'$ so that $g'\phi \simeq g$.



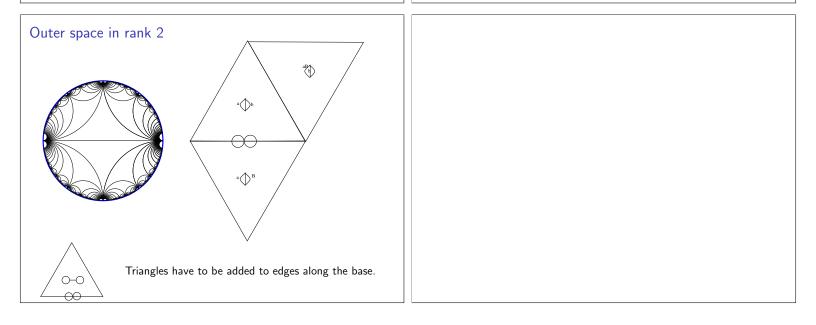


	Figure 2:	Outer space in rank 2	0,	 Outer space Topology (3 approaches, all equivalent): simplicial, with respect to the obvious decomposition into "simplices with missing faces". (g, Γ) is close to (g', Γ') if there is a (1 + ε)-Lipschitz map f : Γ → Γ' with g'f ≃ g. via length functions: if α is a conjugacy class in F_n let ℓ_(g,Γ)(α) be the length in Γ of the unique immersed curve a such that g(a) represents α. Then, for S =set of conjugacy classes X_n → [0, ∞)^S (g, Γ) ↦ (α ↦ ℓ_(g,Γ)(α)) is injective – take the induced topology. Theorem (Culler-Vogtmann, 1986) X_n is contractible.
Action If $\phi \in Out(F_n)$ let $f : R \to R$ be a h.e. with $\pi_1(f) = \phi$ and define $\phi(g, \Gamma) = (fg, \Gamma)$ $\Gamma \stackrel{g}{\to} R_n \stackrel{f}{\to} R_n$ • action is simplicial, • point stabilizers are finite. • there are finitely many orbits of simplices (but the quotient is not compact). • the action is cocompact on the spine $SX_n \subset X_n$.				Topological properties> Virtually finite $K(G,1)$ (Culler-Vogtmann 1986).> $vcd(Out(F_n)) = 2n - 3$ ($n \ge 2$) (Culler-Vogtmann 1986).> every finite subgroup fixes a point of X_n .> every solvable subgroup is finitely generated and virtually abelian (Alibegović 2002)> Tits alternative: every subgroup $H \subset Out(F_n)$ either contair a free group or is virtually abelian (B-Feighn-Handel, 2000, 2005)> Bieri-Eckmann duality (B-Feighn 2000) $H^i(G; M) \cong H_{d-i}(G; M \otimes D)$ > Homological stability (Hatcher 1995, Hatcher-Vogtmann 2004) $H_i(Aut(F_n)) \cong H_i(Aut(F_{n+1}))$ for $n >> i$ > Computation of stable homology (Galatius, to appear)
Dictionary 1 $\frac{SL_2(\mathbb{Z})}{\text{Trace}}$	$SL_n(\mathbb{Z})$ Jordan normal form	MCG(S) Nielsen- Thurston theory	Out(F _n)	Links An <i>n</i> -complex is Cohen-Macauley if the link of every <i>k</i> -cell is homotopy equivalent to a wedge of $(n - k - 1)$ -spheres (for ever <i>k</i>). Examples
⊞ ² hyperbolic (Anosov) element	symmetric space semi-simple (diagonaliz- able)	Teichmüller space pseudo-Anosov mapping class	Outer space fully irreducible automorphism	 manifolds, buildings. Theorem (Vogtmann 1990)
shear	parabolic	Dehn twist	polynomially growing auto- morphism	Both Outer space and its spine are Cohen-Macauley.

Homological stability

Some groups come in natural sequences

 ${\it G}_1 \subset {\it G}_2 \subset {\it G}_3 \subset \cdots$

Examples

- ▶ permutation groups *S_n*,
- signed permutation groups S_n^{\pm} ,
- braid groups,
- ► $SL_n(\mathbb{Z})$, $O_{n,n}(\mathbb{Z})$,
- mapping class groups of surfaces with one boundary component,
- $Aut(F_n)$.

The sequence satisfies homological stability if for every k for sufficiently large n

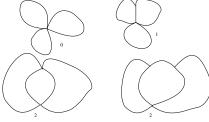
$$H_k(G_n) \stackrel{\cong}{\to} H_k(G_{n+1})$$

is an isomorphism.

Homological stability

 $Aut(F_n)$ acts on Autre espace: this is the space of marked metric graphs with a basepoint.

The degree of a graph is 2n - (valence at the basepoint).



Degree Theorem. The space $A_{n,k}$ of graphs in the spine of degree $\leq k$ is (k - 1)-connected. [H-V 1998], [Bux-McEwen 2009]

Homological stability

One can give a proof over $\ensuremath{\mathbb{Z}}$ along the same lines. Stability holds for

- ► symmetric groups S_n (Nakaoka 1960, Maazen 1979 simpler proof),
- ▶ signed symmetric groups S_n^{\pm} (Maazen's proof easily modifies.)
- $H \times S_n^{\pm}$ for a fixed group H (Künneth formula).

View $A_{n,k}/Aut(F_n)$ as an "orbihedron"; pay attention to the (finite) stabilizers.

E.g. at the rose, the stabilizers are signed permutation groups $S_n^{\pm} = S_n \rtimes \mathbb{Z}_2^n$. Stability holds for this sequence. In fact, stability holds for the sequence of stabilizers at every point of the orbihedron. They all have the form

$$H \times S_n^{\pm}$$

for a fixed group H.

Homological stability

Theorem

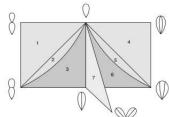
Aut(F_n) satisfies homological stability. Hatcher 1995, Hatcher-Vogtmann 1998, Hatcher-Vogtmann 2004, Hatcher-Vogtmann-Wahl 2006. The proof over \mathbb{Q} is particularly striking, from [Hatcher-Vogtmann 1998].

Homological stability

We are interested in $H_{k-1}(Aut(F_n), \mathbb{Q}) = H_{k-1}(A_{n,k}/Aut(F_n), \mathbb{Q})$. Homological stability follows from:

$$A_{n,k}/Aut(F_n) = A_{n+1,k}/Aut(F_{n+1})$$

for $n \ge 2k$.



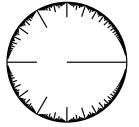
 $A_{n,k}/Aut(F_n)$ is the space of unmarked metric graphs. Increasing *n* amounts to wedging a loop at the basepoint. When *n* is large every degree *k* graph has a loop at the basepoint.

Dynamical properties

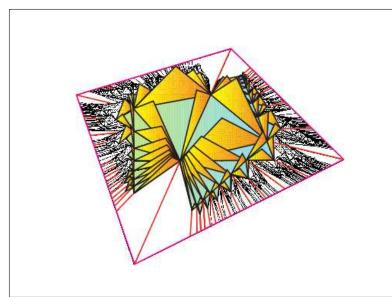
 X_n can be equivariantly compactified to X_n (Culler-Morgan, 1987), analogous to Thurston's compactification of Teichmüller space via projective measured laminations.

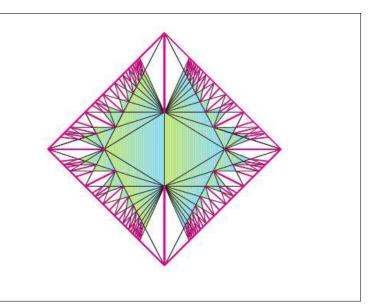
$$X_n \subset [0,\infty)^S \to P[0,\infty)^S$$

is injective; take the closure.



A point of X_n can be viewed as a free simplicial F_n-tree; a point in ∂X_n = X_n \ X_n is an F_n-tree (not necessarily free nor simplicial).





Dynamical properties

- Points in ∂X_n can be studied using the Rips machine.
- Guirardel (2000): action on ∂X_n does not have dense orbits. He also conjecturally identified the minimal closed invariant set.
- North-South dynamics for fully irreducible elements (Levitt-Lustig, 2003)

Dictionary 2

MCG(S)	$Out(F_n)$
simple closed curve	primitive conjugacy class
incompressible subsurface	free factor
incompressible substituce	splitting of F_n
measured lamination	\mathbb{R} -tree
Thurston's boundary	Culler-Morgan's boundary
attracting lamination for a	attracting tree for a fully irre-
pseudo-Anosov	ducible automorphism
measured geodesic current	measured geodesic current
intersection number between	length of a current in an \mathbb{R} -tree
measured laminations	
curve complex	free factor complex
	splitting complex

Marc Culler and Karen Vogtmann. Moduli of graphs and automorphisms of free groups. *Invent. Math.*, 84(1):91–119, 1986.

Karen Vogtmann.

Automorphisms of free groups and outer space. In Proceedings of the Conference on Geometric and Combinatorial Group Theory, Part I (Haifa, 2000), volume 94, pages 1–31, 2002.

Karen Vogtmann.

The cohomology of automorphism groups of free groups. In *International Congress of Mathematicians. Vol. II*, pages 1101–1117. Eur. Math. Soc., Zürich, 2006.

Martin R. Bridson and Karen Vogtmann. Automorphism groups of free groups, surface groups and free abelian groups.

In *Problems on mapping class groups and related topics*, volume 74 of *Proc. Sympos. Pure Math.*, pages 301–316. Amer. Math. Soc., Providence, RI, 2006.

