
33,550,336 is a perfect number. Of course, it isn't alone in this 6; is a perfect 

number, so is 28 and 496 and who could forget 8,128. Euclid knew about these first few 

perfect numbers thousands of years ago. In fact, in Euclid's Elements he took the time to 

prove a little theorem about them. Proposition 36 of book IX states that: 

 

If as many numbers as we please beginning from a unit are set out 

continuously in double proportion until the sum of all becomes prime, 

and if the sum multiplied into the last makes some number, then the 

product is perfect. 

 

Which simply means that if  is prime then 12 −p 122 1 −− pp  is perfect. But, then perhaps 

I am getting ahead of myself. 

 We call a number prime if the only things that divide it without remainder are 

itself and one. The aliquot parts of a number are all the divisors of a number less than 

itself. For example 6 can be divided by 1, 2, and 3 and so those are its aliquot parts. A 

perfect number is one for which the sum of its aliquot parts is equal to itself. Take 6 it's 

divisors are 1, 2, and 3 and 1+2+3=6, thus it is a perfect number.  

The divisor sigma function ( )nσ  gives the sum of the divisors of a number 

including itself. This function includes the number n as one of its divisors because this 

gives it the very useful property that ( ) ( ) ( )baab σσσ = when a and b share no common 

factors. Expressing the condition for perfect numbers using sigma notation we get 

( ) nn 2=σ .  



The sigma notation makes things much easier, for instance a simple proof of 

Euclid's result is easily made.  If  and  122 1 −= − ppn 12 −p  is prime then 

( ) ( ) ( )122 1 −= − ppn σσσ . Since 12 −p is prime the sum of its divisors is simply itself plus 

1. Since is a power of two its divisors are just all of the powers of two less than or 

equal to it meaning that 

12 −p

( ) 122 1 −=− ppσ . Thus the product of the two is 

( ) ( ) ( ) ( ) ( ) nn pppppp 22122212122 11 =−=−=−= −− σσσ  and thus n must be perfect. 

With a slightly more complicated proof Euler was able to show that any even perfect 

number must in fact be of the form discussed above. 

The prime  in the factorization of this number is called the Mersenne prime 

after Marin Mersenne who investigated numbers of that form. Mersenne primes have 

enjoyed quite a bit of attention with a distributed computer search being carried on over 

the internet. Over its history the Great Internet Mersenne Primes Search or GIMPS has 

checked and double checked all the numbers 

12 −p

12 −n  for primality up to n = 14,001,400 

providing us with most of our known Mersenne primes and therefore with their 

associated perfect numbers as well. 

 

The results on odd perfect numbers are numerous, but much less powerful; we 

don't even know whether an odd perfect, in fact, exists. Descartes saw no reason that 

there should be no odd perfect numbers. In a letter to a friend he noted that the number 

 would be an odd perfect number were 22021 prime. Euler proved that 

if they exist they must be of the form 

22021131173 2222

( ) 21414 kmn n++= . The restrictions upon an odd 

perfect number, should one exist, are piling up one on top of another. Odd perfect 



numbers if they exist must be bigger than , must contain a prime in their 

factorizations greater than , and must contain at least 9 distinct prime factors or 11 

distinct prime factors if 3 is not a factor. If one exists, then an odd perfect must be less 

than  where k is its number of distinct prime factors. Although the last result is 

helpful in theory it is still much too large to be useful in searches for odd perfects. Just 

plugging in the minimum of 9 distinct primes we get that n if it exists must be less than  

about  for which needless to say is not plausible to do a comprehensive search.  
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One thing is very clear from all of this and that is that if an odd perfect number 

does in fact exist it is extremely large. A heuristic based on an analogy between 

abundants and perfects provides a very large prediction of an odd perfect numbers size. 

An abundant number is one whose aliquot parts add up to more than itself. Abundant odd 

numbers are also fairly hard to come by. The first abundant number is 12 but the first odd 

abundant number is 945. A quick analysis of the rate at which abundant numbers increase 

shows a remarkably linear increase. 
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 If we assume that about one in four numbers is abundant we get a fairly good 

model at least for small numbers. Knowing that the first odd abundant number is 945 we 

would estimate that it would be about the 945/4=236th abundant number. A quick Pari 

script showed that in fact 945 is the 232nd abundant number.  

Now perfect numbers are extremely rare. The fourth one is in the millions and 

very soon they rocket into the stratosphere. There are only 44 known to date with the 

largest one having 9,808,358 digits.  

A linear regression on the exponents of the Mersenne primes isn't nearly as 

satisfying as it was for the abundant numbers giving an 2r value of 0.2642. An 

exponential is a much better fit with an 2r of .982133. 
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  However, if we use the best fit exponential of the Mersenne exponents versus the 

number of Mersenne primes up to that, then if we assume that the first odd perfect shows 

up analogously late as the abundant odd numbers then we are looking at numbers which 

would be about . Of course all the memory in my desktop computer could only 

just barely hold a single number of a size of about .  Arithmetic on such a large 

number would be essentially impossible with today’s computational capabilities. 
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I endeavored to model the sigma function with simpler functions. The sigma 

function is extremely irregular increasing and decreasing seemingly at random. The 

reason for its jumpiness is that the value of sigma is related to the factorization of the 

number which is very hard to predict. But if you know how the number is going to factor 

then the sigma function is not hard to figure out. For instance consider the sigma function 

for primes. If n is prime then ( ) 1+= nnσ . In fact so long as we only allow there to be 

one unknown prime in the factorization of n then we can replace ( )nσ  with a monotonic 

function.  

While the sigma function seems to jump around mostly at random we can model 

it with several functions which only increase. We just need to keep an eye out that we 

know which function has the valid value at a particular position.  
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If you know all the primes but one in the factorization of a number then you can replace 

that number with the function 
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When x is of the form  then ap ( )xaδ  will give the correct sigma. In order for the delta to 

be a replacement for the sigma function for the case of powers of single primes we need 

to create a family of functions, one function for each integer a>0. For numbers of a more 

general form we can separate out all but one prime into a separate factor k to get a class 

of monotonic functions which together cover all the points of the sigma function. The 

functions would be of the form 
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which would yield the correct value of ( )nσ  when k||n and 
k
n  is of the form .  ap




