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Abstract

The task of this project is to take a data set that has several data points and
using statistical analysis make the set into about 4 or 5 data points that still con-
tain between ninety-eight and ninety-nine percent of the original information. This
makes it so the data as a whole is easier to analyze and draw conclusions from. The
data set I used for this project was a set of the average monthly temperatures in
Prague ranging from 1775-1989. The goal is to take this 215 by 12 matrix and break
it down to a function that we can analyze in order to determine if the temperature
in Prague has changed over the last 215 years. Each year of this data set can be
represented as a stepwise function by saying that each month represents 1/12, so
the entire year is set along the x axis on an interval from 0 to 1. The points along
the y-axis are just the temperatures for each of the twelve months. We can then use
a Fourier expansion to make it a smooth continuous function. This new function is
easier analyze. We can then see if the function follows Brownian Motion.

My research had four major parts this semester. The first was to understand L2

spaces, the second was to find the eigenvalue and eigenfunction so we could use the
Fourier expansion, The third part was to apply the eigenfunction and the stepwise
function to the Fourier expansion, and finally I did some research to learn about
Brownian Motion.

1 An introduction to L2 spaces

My first assignment was to do some research on L2 spaces to learn about all the different
properties of this space. This was neccesary to do because I needed to find a way of
representing the stepwise function as a continuous function for each year of data. The
space that these functions are then analyzed in is the L2 space. This is a summary of
what I found out about L2 spaces.

An L2 space is an example of a metric space with the points in the space being continuous
functions defined on an interval I = [a,b]. The metric of this space is defined by

(1.1) d(f, g) = ||f − g|| =
( b∫

a

|f(t)− g(t)|2dt

)1/2

1



and the limit as k goes to infinity of fk = g can be written, after squaring the results, as

(1.2) lim
k→∞

b∫
a

|fk(t)− g(t)|2dt = 0

(1.1) is called the mean square convergence and is used for working with Fourier series.
Even though mean convergence and uniform convergence are being used on the same
functions they are in fact different. This is also true for the metrics of the L2 space
compared to that of the l2 space which is defined by

(1.3) d(p, q) = ||p− q|| =
( ∞∑

k=1

|ak − bk|2
)1/2

Mean convergence and uniform convergence are different, just as the metrics of the two
different spaces are different, even though they are being used on the same collection of
functions.

The inner product in L2 is written as,

(1.4) < f, g >=

∫ b

a

f(t)g(t)dt

and the same Schwartz inequality holds for this space, that is,

(1.5) | < f, g > | ≤ ||f ||||g||

Two functions f and g in L2 are orthogonal when neither of them are 0, and < f, g >= 0.
An infinite set of functions noted by {ρk} is an orthogonal set if every distinct pair is
orthogonal. This is stated as

(1.6) < ρk, ρ` >= 0 k 6= `

and in integral form as

(1.7)

∫ b

a

ρk(t)ρ`(t)dt = 0 k 6= `

If we have an infinite set of functions in L2 such that the norm of these functions equals
one, then the set of functions is said to be orthonormal on the interval I. These orthonormal
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sets can be constructed from any infinite linearly independent set of functions by taking
appropriate linear combinations to achieve the orthogonality.

The space of continuous functions is not complete in L2. This means that there are
functions in L2 that may obey the Cauchy criterion, lim

k→∞
fk(t) = 0, but may not be a

continuous function.

A Fourier series may be used to enlarge the function space to include more discontinuous
functions. Now, any sequence that is Cauchy in L2 space will now converge in that L2

space to one of the functions in the new space. In order to make the space larger, all
piecewise continuous functions on the interval I = [a, b] are included along with functions
having an infinite number of discontinuities.

Orthonormal basis also exist in L2 space. These basis are called Fourier basis. A orthonor-
mal set {ρk} in L2 is a Fourier basis if every function in L2 has the unique expansion.

(1.8) f =
∞∑

k=1

ckρk

Here ck =< f, ρk > for k = 1, 2, 3 . . .

The sequence {ck} is usually referred to as the sequence of Fourier coefficients of f with
respect to the orthonormal set {ρk}. {ck} can be constructed for any {ρk} whether or not
they form a basis. It is always possible to form the series

∞∑
k=1

ckρk = c1ρ1 + c2ρ2 + . . .

Assuming that
∑∞

k=1 c2
i ≤ ∞.

This series is called a Fourier series for f with respect to the orthonormal set {ρk}. The
integral form of ck is

(1.9) ck =

∫ b

a

f(t)ρk(t)dt

When f is assosciated with its Fourier series, it is often written as

(1.10) f(t) ∼
∞∑

k=1

ckρk(t)

The set {ρk} is a basis if and only if

(1.11) lim
N→∞

∫ b

a

|f(t)− SN(t)|2dt = 0
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Where SN(t) =
∑∞

k=1 ckρk(t) is the sequence of partial sums.

After completing the research on this subject I was given the opportunity to see how
quickly functions converge in L2 space. I was shown the Brownian Motion equation

(1.12) W (t) = Y0t +
√

(2)
∞∑

k=1

Yk
sinkπt

kπ

I used the statistical package R to generate standard normal random variables to use in
(1.12). I then made a plot of the equation with k = 1 then k = 2 and so on all the way up
to k = 20. I found that the function is converging relatively quickly after about k = 12
This was useful because I knew I would be plotting the functions from the Prague data,
so this gave me a good idea of how many terms I should use to construct the plot of each
function.

2 Derivation of the equation for eigenvalues and eigen-

function

Now that I knew some propeties of L2 spaces I could use (1.8) to create a nice smooth
function of each year in the data set. ck are the Fourier coefficients defined in (1.9). The
variable f in (1.9) is the stepwise function created for each year of the data set as explained
in the abstact of this report. I was able to find the orthonormal basis ρk(t) by solving the

equation λkρk(t) =
∫ 1

0
c(t, s)ρk(s)ds for c(t, s) = min(t, s).

We can rewrite the equation as

λkρk(t) =

∫ 1

0

min(t, s)ρk(s)ds

Now, the integral on the right hand side of the equation needs to be split up for the cases
when 0 < s < t in which case min(t, s) = s, and when t < s < 1 in
which case min(t, s) = t. The equation is then rewritten as

(2.1) λkρk(t) =

∫ t

0

sρk(s)ds +

∫ 1

t

tρk(s)ds

To solve the integrals, we introduce two new functions. They are f(s) = sρk(s) and
g(s) = ρk(s). We call F (s) and G(s) the antiderivatives of f(s) and g(s) respectively, so
that F ′(s) = f(s) and G′(s) = g(s). (2.1) then becomes

λkρk(t) =

∫ t

0

f(s)ds +

∫ 1

t

tg(s)ds
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Recalling the fundamental theorem of calculus:
∫ b

a
f(x) = F (b)− F (a) Where F

is the antiderivative of f . By solving the integrals using the fundamental theorem of
calculus we get

(2.2) λkρk(t) = F (t) − F (0) + t[G(1) − G(t)]

We can now take the derivative with respect to t of both sides of the equation. We can
do this because the functions on the right hand side of the equation are antiderivatives,
so therefore they can also be differentiated. Differentiating both sides we get

(2.3) λkρ
′
k(t) = F ′(t) − F ′(0) + tG′(1) + G(1) + −tG′(t) + −G(t)

We can cancel out like terms and use the fact that the derivative of a function of a constant
is 0 to rewrite (2.3) as

(2.4) λkρ
′
k(t) = F ′(t) − G(1) + −tG′(t) + −G(t)

Plugging in our known equations for F ′(t) and G′(t), (2.4) is rewritten as

(2.5) λkρ
′
k(t) = tρk(t) − G(1) − tρk(t) − G(t)

We can take the derivative of both sides again since the functions on the right hand side
are antiderivatives they are also differentiable. We get

(2.6) λkρ
′′
k(t) = −G′(t)

Plugging in for G’(t) we get:

(2.7) λkρ
′′
k(t) = −ρk(t)

We now want to find an orthonormal system for this equation. The series of functions
need to satisfy two conditions. They are:

(i)
∫ 1

0
ρ2

k(t) dt = 1.

(ii)
∫ 1

0
ρk(t)ρ`(t) dt = 0 where k 6= `

I found two sets of functions that meet these conditions. They are

(i) ρk(t) =
√

2 cos(kπt) for all k = 1, 2, . . .

and
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(ii) ρk(t) =
√

2 sin(kπt) for all k = 1, 2, . . .

We can now take the second derivative of both of these equations and plug either one of
them into (2.7) to get:

λk(−
√

2k2π2 sin(kπt)) = −
√

2 sin(kπt)

Which can be simplified to:

λk =
1

k2π2

λk is an eigenvalue for for our orthonormal system. (2.7) can now be rewritten as

(2.8)
1

k2π2
ρ′′k(t) = −ρk(t)

This shows that {ρk} does in fact form an orthonormal system.

Now that we have the orthonormal basis, we can apply one of the eigenfuntions to solve
the equation for the Fourier coefficients ck. The stepwise functions tend to look like a sin
function so I choose to use the eigenfunction

√
2 sin(kπt). I calculated these coefficients

in the programming package Maple. Recalling that the functions tend to converge to
a smooth good representation of the data after only about 12 steps, I only needed to
calculate the first 12 Fourier coefficients for each year of data. After calculating these
Fourier coefficients, I was able to plug them into (1.8) to get a function that we could
really start to work with. A graph of this function revealed that it was a good fit of the
data because it had the same approximate shape as the stepwise function. So 12 Fourier
coefficients was adequate for what we wanted to accomplish.

3 Brownian Motion

The next and final part of the research project was to do a little research on Brownian
Motion.

Brownian motion is a broad topic with many applications in math, physics, finance,
and economics. In physics, Brownian motion is used to describe the random movement
of particles suspended in a fluid, the mathematical process used to describe the random
movements is called the wiener process. It is the wiener process that we are most interested
in studying.

Before we can study the Wiener process we must first know what continuous time stochas-
tic processes and Levy processes are. A stochastic process is the opposite of a deterministic
system where the outcome is known. In a stochastic or random process there is some in-
determinacy in its future evolution described by the probability distributions. This means
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that even if the initial condition or starting point is known, there are many possibilities
the process might go to, but some paths are more probable than others.

A continuous-time stochastic process assigns a random variable Xt to each point t ≥ 0 in
time. It can also be called a random function of t. The Increments of such a process are
the differences Xs −Xt between its values at different times t ≤ s.These increments can
be called independent if we say that the increments Xs−Xt and Xu−Xv are independent
random variables whenever the two time intervals do not overlap and any finite number of
increments assigned to pairwise non-overlapping time intervals are mutually independent.
The increments can be referred to as stationary if the probability distribution of any
increment Xs−Xt depends only on the length s− t of the time interval; if the increments
have equally long time intervals they are identically distributed.

A levy process is simply a continuous time stochastic process that starts at 0, is every-
where right continuous and has left limits everywhere, and has ”stationary independent
increments” as described in the previous paragraph.

The wiener process is one of the best known Levy processes and plays an important role
in both pure and applied mathematics. There are three important characteristics of the
Wiener process Wt. They are:

1. W0 = 0

2. Wt is almost surely continuous

3. Wt has independent increments with distribution Wt −Ws ∼ N(0, t− s)

The 3rd characteristic needs a little explaining. N(0, t− s) denotes the fact that Wt is a
normal distribution with mean 0 and variance t−s. The condition that it has independent
increments means that if 0 ≤ s1 ≤ t1 ≤ s2 ≤ t2 then Wt1 − Ws1 and Wt2 − Ws2 are
independent random variables.
One such Wiener process is defined by

(3.1) Wt =
n∑

k=1

λkNkρk(t)

Where λk = 1
k2π2 , Nk are independent identically distributed standard normal random

variables, and ρk(t) =
√

2 sin(kπt) which is the orthonormal basis found in section 2.

4 Results and Future Plans

I was unable to finish this project in one semester, so hopefully I can finish it next
semester. This semester was mostly devoted to researching the theory behind the project.
Because of this, I did not have a concrete answer to our original question of whether the
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temperature is increasing in Prague. I did feel my research set me up really well to finish
the project next semester. My major result by the end of this semester was finding the
Fourier coefficients. This will be a great starting points for next semester.
I really enjoyed the project and would like to continue in spring semester. If I am able to
continue, I will continue where I left off with the Fourier coefficients. I will use Maple to
calculate 12 Fourier coefficients for each of the 215 years of data that I have. Once I have
all of the coefficients i can plug them into the equation∣∣∣∣ k∑

i=1

ci −
k

n

n∑
i=1

ci

∣∣∣∣
Where, k is the number of Fourier coefficients and n is the number of years of data. The
resuting equation will give us a smooth equation that holds all the information of the
215 years of data points. I will then be able to run some statistical analysis in order to
determine if the temperature in Prague really has been changing over the last 215 years.
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