
ABSTRACT  
 
Tiny insects use a process called ‘clap and fling’ to augment the lift forces generated during 

flight.  The one disadvantage to using this method is the drag forces created when the wings 

fling apart are very large.  Many tiny insects have bristled rather than solid wings, and it is 

thought that using the bristled wings might help reduce drag when the wings are pulled apart.  

The basic idea is that the wings might act as ‘leaky rakes’ during fling, meaning that the air 

travels through the wing reducing the drag forces generated.  When the wings are in 

translation, they act like solid plates because the force acting normal to the wing is reduced. 

This mechanism is only possible if the wings flap at an intermediate Reynolds number where 

there is a sharp transition between arrays of cylinders acting as solids or porous media.  To 

investigate whether or not this mechanism is feasible, we looked at leakiness for two 

different Reynolds numbers, ten angles of attack and three spacings. We used experiments 

rather than mathematical simulations study this problem due to the computational 

requirements of solving the Navier-Stokes equation in three dimensions for a number of 

configurations.  From our experiments we found that leakiness decreases as the angle of 

attack decreases.  We also found that leakiness decreases as the Reynolds number decreases.  

It seems likely that the wings act as solid plates for high angles of attack at higher Reynolds 

numbers, and as solid plates for lower angles of attack at lower Reynolds numbers.  
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Introduction 
 

Insect flight is a very active area of research in many different fields of study.  This interest, 

in part, began as an engineering paradox.  One can show using two-dimensional (2-D) steady 

state aerodynamic theory that a bumble bee would not be able to fly.  This would be shown 

by comparing an insect’s weight to the average amount of lift generated.  In other words, if 

the weight of the bee is more then the lift generated by their wings, then it would be 

impossible for the bee to fly.  This paradigm is obviously not true, and it led some physicists 

and mathematicians to start studying insect flight because they wanted to understand the 

mechanics and develop their own theory.   

 

Biologists have also been very interested in the study of the functional morphology of insect 

flight.  Wing design is an excellent example of convergent adaptation, and studies of the 

morphology are informative since the wing primarily has only one function (to generate lift). 

Biologists are also interested in the biological control, adaptation, and comparative 

morphology of insects and their flight patterns.   

 

Engineers study the physiology, stability and maneuverability of flight.  One main interest in 

the study of flight is for the creation of micro air vehicles and other turbomechanics.  These 

tiny vehicles are designed mainly for military reasons.  Another reason to study insect flight 

is to improve engineering design.  There are some aspects of insect flight that humans have 

not been able to replicate.  For example, an attribute such as hovering is a quality that man 

made objects have not even come close to being able to replicate.   
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Mathematicians view the problem of explaining how a bumble bee can fly in their own 

unique terms.  Many observations come into play such as how various wings move 

individually and what kinds of forces they create in concert with another wing.  These 

movements can be described through a mathematical language of fluid dynamics.  Inherent in 

that language is the Reynolds number which is a dimensionless number that is used to 

determine different types of fluid motion.  It is measured by examining a ratio of the inertial 

forces to the viscous forces and is defined as: 

μ
ρlU

=Re   (1) 

where ρ represents the density of the fluid, l is a characteristic length (chosen as the chord 

length of the wing or the diameter of the bristle, depending upon the problem), U is the free 

stream velocity of the fluid and µ is the dynamic viscosity.  Two other useful dimensionless 

numbers include the lift coefficient and drag coefficient. These are given by the following 

equations: 
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where FL is the lift force acting on the wing, FD is the drag force acting on the wing, and S is 

the surface area of the wing. The Reynolds number range of insect flight is about 101 < Re < 

103, and for airplanes it is about 106 < Re < 108.  Fluid flow acts very differently at high, 

medium and low Reynolds number.  For this paper, what is meant by high to low Reynolds 

numbers (Re) is given in the following chart: 
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High  Re > 103 Planes 

High Intermediate 102 < Re < 103 Large insects; bees, flies 

Intermediate 100  < Re < 102 Tiny insects; thrips, tiny wasps 

Low Intermediate 10-2 < Re < 100 Swimming in tiny insects, no active 
flying, parachuting by some seeds 

Low Re < 10-2 Bacterial swimming 

 

It is difficult to study the leakiness of actual insect wings because they are so small.  We wish 

to study flight at low Re since it is different for the smallest flying insects, and it becomes 

less efficient as the Re decreases.  Since objects with the same Reynolds number are 

dynamically similar, it is possible to create larger physical models of wings to study the 

aerodynamics.  Using the similarity law, as long as the model has the same Reynolds 

number, it will be a sufficient representation of an actual wing.   

 

Insect flight is very different from airplane flight because of the shape and motion of the 

wing and the way the vortices are formed and shed.  At the beginning of each stroke, a 

leading edge vortex (LEV) is formed and will remain attached until the beginning of the next 

stroke.  As demonstrated by Miller and Peskin (2004), we can better understand how lift is 

generated in insect flight by using a general theory of aerodynamic force in viscous flows 

developed by Wu (1981).  Let represent an infinite space containing a 2-D object 

immersed in a viscous fluid which is initially at rest.  The space occupied by the fluid will be 

defined as,  and the space occupied by the object will be S.  Since the total vorticity in  

is initially zero, it can be shown that the total vorticity in  is zero for any finite time using 

the conservation of total vorticity:  

∞R

fR ∞R

∞R
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0),( =∫∫
∞

dxdytx
R
ω  (4) 

where x is the position vector x = [x, y]T, ω is the vorticity in two-dimensional flow [ω = 

(dv/dx)-(du/dy)], and the fluid velocity is given as u(x, t)=[u(x, t), v(x, t)]T.  Note that this 

statement is only true when looking at vorticity over the total space occupied by both the 

fluid and the solid.  The aerodynamic force exerted on the solid can then be approximated as: 

dxdytxu
dt
d

dt
tdMtF

S∫∫+−= ),()()( ρρ  (5) 

dxdytxytM
fR∫∫= ),()(1 ω      

dxdytxxtM
fR∫∫= ),()(2 ω  (6) 

where M = [ , ]1M 2M T is the first moment of vorticity, F = [ , ]1F 2F T is the force acting on 

the wing, ρ is the density of the fluid, and S is the region occupied by the solid.  

 

 During periods of translation, the middle term in equation (5) goes to zero and what is left is 

as follows: 

dxdyy
dt
d

dt
dMF

fRD ∫∫−=−= ωρρ 1  (7) 

dxdyx
dt
d

dt
dMF

fRL ∫∫=−= ωρρ 2  (8) 

where is the lift force, and is the drag force exerted on the solid.  By using these 

equations we can see that the lift and drag forces are both proportional to the time rate of 

change of the first moment of total vorticity.   

LF DF
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Now we consider the case of a wing which is translated from rest with an attached LEV and a 

trailing edge vortex that is shed.  In the following equations represents the region of fluid 

that the LEV and TEV are present in.  The point of reference in these equations has the 

boundary stationary with the fluid moving past it in a positive direction of left to right.  

Along the leading edge of the wing a negative (clockwise) vorticity is formed while a 

positive (counterclockwise) vorticity creates the start of a vortex.  The total lift force is given 

in the following equation: 

fR

dxdyx
dt
dF

fRL ∫∫= ωρ dxdyx
dt
ddxdyx

dt
d

nP RR ∫∫∫∫ −−= |||| ωρωρ , (9) 

where  is the region of negative vorticity,  is the region of positive vorticity, and |ω| 

represents the absolute value of vorticity. 

nR pR

 

he 

Fig. 1.  Regions of positive and 
negative vorticity for a wing in fluid 
moving from left to right.  
represents the region of negligible 
vorticity,  represents a region of 
negative vorticity and  represents a 
region of positive vorticity.  (a) For 4< 
Re < 40, leading and trailing edge 
vortices are formed and remain 
attached to the wing. (b) For Re > 40, 
the trailing edge vortex is shed, and t
leading is vortex remains attached to 
the wing until stroke reversal. 

0R

nR

pR

 
 

 

Numerical simulations have shown that wake dynamics for insects flying at higher and lower 

Reynolds number are quite different (Peskin and Miller, 2004; Sun, 2002; Wang, 2000).  The 
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differences in the wake dynamics also have consequences for the relative lift and drag forces 

generated.  Wake dynamics for the lower Reynolds number case are shown in Fig 1a.  

Vortical near-symmetry is generated when neither the leading nor trailing edge vortices are 

shed until stroke reversal.  Since the difference in the time rate of change of the first moment 

of positive and negative vorticity is minimal, lift forces are greatly reduced for insects flying 

at a Reynolds number below about 40.  The wake dynamics for Reynolds numbers above 40 

are shown in Fig. 1b.  In this case, the trailing edge vortices are initially shed, and the leading 

edge vortices remain attached to the wing until stroke reversal.  This difference in wake 

dynamics creates a vortical asymmetry which generates higher lift forces.  It is also important 

to note that for Re lower than 40, drag coefficients increase significantly as the Re decreases. 

 

The fact that the leading edge vortex (LEV) is not shed at high angles of attack was a very 

important step towards understanding insect flight aerodynamics.  In the case of airplanes, 

the leading edge vortex is shed at the high angles of attack for which insects fly.  This causes 

stall and a large drop in the lift force generated.  The reason why the LEV is not shed for 

insects is both a function of the Reynolds number and the fact that insect wings rotate at their 

base in three-dimensions (3-D) (Birch et al., 2004).  The fact that a relatively large LEV is 

formed and does not separate from the wing allows the insect to generate much larger 

relative lift forces than manmade aircraft flying at very high Re.  

 

In the one wing case, lift is significantly reduced when the Reynolds number drops below 

about 40.  However, lift is recovered when two wings perform the clap and fling motion.  As 

mentioned above, the insects clap their wings together at the end of the upstroke, and fling 

their wings apart and the beginning of the downstroke (Lighthill, 1973; Weis-Fogh, 1973).  
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Some of the insects that use the clap and fling method are greenhouse white flies (Weis-Fogh 

1975), thrips (Ellington 1999), and butterflies.  The extra lift is generated when these small 

insects fling their wings apart at the beginning of each down stroke, creating two large 

leading edge vortices (see Fig 2).  Miller and Peskin (2005) also found that clap and fling has 

a greater lift augmenting affect at lower Reynolds numbers.  Perhaps this is why most tiny 

insects use this mechanism of lift generation. 

 

 The wings shown in Fig. 2 represent the translation and rotation that occur during clap and 

fling.  The wings are initially clapped together, rotate along the leading edges, and then 

translate apart.  The rotational portion of the movement creates two large leading edge 

vortices.  The two vortices are equal in strength but have opposite signs, one positive and one 

negative.  When the wings reach the end of their motion they are translated along a  

 

Fig. 2. Positive and 
negative regions of 
vorticity during fling.  
The regions denoted by 

 and  represent 
negative vorticity, while 

 and  represent 
regions of positive 
vorticity. The asymmetry 
between the LEV’s and 
TEV’s augments the lift 
generated. 

1nR 2nR

1pR 2pR

 

 

horizontal plane creating two small trailing edge vortices.  The wings in this model are being 

pulled apart in the direction of the arrows.  The leading edge vortices are stronger then the 
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trailing edge vortices, which creates a vortical asymmetry leading to greater lift.  The total 

lift acting on these wings can be described using the viscous aerodynamic theory developed 

by Wu (1981): 

∫∫∫∫ ∫∫ ++
−==

2121
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dt
ddxdyx
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ddxdyx

dt
dF ωρωρωρ    (10) 

where |ω| represents the absolute value of vorticity.  In the case described with an Eulerian 

perspective, the equation for total lift is written as: 
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In this equation the vortices are defined with  and  having vortices being pulled to 

the left by the wing, having a negative velocity.   and  are being pulled to the right 

by the wing, having positive velocity.  In equations (9) the total lift on wing 1 and wing 2 is 

proportional to the magnitude of the time rate of change of the first moment of vorticity of 

the leading edge vorticity minus the magnitude of the time rate of change of the first moment 

of vorticity of the trailing edge of vorticity.  It is the vortical asymmetry present as the 

difference in the magnitude of the leading and trailing edge vorticity generated by the clap 

and fling motion that produce enhanced lift during translation. 

1nR 2nR

1pR 2pR

 

One problem with the clap and fling method is that relative drag forces increase significantly 

during fling for flight at a small Re.  Some of possible ways to lower drag are to use flexible 

wings (Miller and Peskin, submitted) or to have leaky bristled wings.  Interestingly, almost 

all tiny insects do have bristled wings.  The measure of leakiness depends on the spacing of 
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the bristles on the wing and the Re.  Sunada et al. (2002) studied a single bristled wing.  They 

found that lift and drag changed in proportion with and without bristles.  There was no 

apparent aerodynamic benefit of bristles for one wing flapping when compared to a solid 

wing.  One idea suggested by Miller and Peskin (submitted) is that there may be a benefit 

with two wings.  There may also be a benefit when different angles of attack are considered. 

 

Miller and Peskin (submitted) proposed that the wings may act as leaky plates during the 

initial fling due to large forces acting normal to the wing, and as solid plates during the 

remainder of the stroke due to smaller forces acting normal to the wing.  This would have the 

effect of changing the characteristic Reynolds number of the system.  Cheer and Koehl 

(1987) described how the bristled wings in tiny insects are close to a transition point in Re 

where the wings go from acting as a solid at lower Re to acting as a leaky rake at higher Re 

(see Fig 3).  Perhaps the initial fling is characterized by this higher Re range, and the 

translation of the wing is in this lower Re range.  In order to determine whether or not this 

could be a drag reducing mechanism, we need a better understanding of how leakiness varies 

with Reynolds number, the spacing of the bristles, the length of the wing, the angle of attack, 

and the force acting normal to the wing. 

. 
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Fig. 3.  A graph from the results of Cheer & Koehl (1987) showing leakiness plotted vs. the 
width of the spacing of the cylinders used in their experiment.  The Re value is labeled at the 
end of each curve.  Note that for tiny insect flight, the Reynolds number calculated using the 
diameter of a bristle may vary from about 0.01 to 0.1. There is also about a 10-20 to 1 ratio 
between the diameter of a bristle and the space between the bristles. 
 
 

Methods 

The months prior to running these experiments were spent finding a suitable design for a low 

to intermediate Reynolds number flow tank.  Once an appropriate design was chosen, the 

next step was to create a physical model to simulate a bristled wing.  Next, the Re was 

chosen to accurately reflect that of a small insect such as a thrip so that the model will be 

dynamically similar to an actual insect wing.  The range of Re used was 10-3 < Re < 10-1. 

Note that in this case the Reynolds number for a thrips wing using the bristle width as the 

characteristic length is about 10-2.  When the characteristic length is chosen to be the chord 

length of the wing, the Reynolds number for thrips flight is about 10. 
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The flow tank was chosen to have a low Re flow, and is depicted in Fig. 4, and was attached 

to a Fisher Scientific, Mini-Pump Variable Flow peristaltic pump.  The peristaltic pump was 

used to drive flow at a constant velocity through the main chamber of the pump where we 

placed a model wing.  Because our tank operates at a low Re (Re < 1) we did not have to 

worry about turbulence or the formation of vortices, so flow straighteners were not 

necessary.  Fully developed Hagen-Poseille flow developed before reaching the model.  The 

models were made on a poster board base, and a “dish” was carved out of bottom tank to 

hold the model in place. 

 

The models used to represent the wing were created out of poster board coated in epoxy glue 

with pins, ¼ mm in diameter, to represent the bristles on the wings.  To study the leakiness of 

the bristles in the wings, the three different spacing of the pins which were examined were 1 

cm, ½ cm and ¼ cm.  Each of the different pin spacing were arranged in 9o increments from 

0o  

Fig. 4. Model of the flow tank used.  
The overall dimensions of the tank 
were: l x w x h = 60 x 8 x 8 cm.  
Dimensions for the inlay in the bottom 
center l x w x h = 30 x 4 x .5 cm.  At 
each end, there are circular holes 
where plastic tubing was attached. 
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to 90o, creating 11 angles for each.  The middle spacing of ½ cm represents the ratio between 

the diameter of the thrips bristle to the space between each bristle as discussed in Cheer and 

Koehl (1987). 

  

The sucrose solution which was used in the flow tank was mixed to get the appropriate range 

of Re.  The ratio of sugar to water was 7lbs sugar to 3000ml of water.  A Cannon Instrument 

Company viscometer No. 3B K432 was used to measure the viscosity of the sucrose solution.   

 

For the flow visualization food coloring was added into the sucrose solution and injected into 

the flow with a syringe.  The dye was injected parallel to the wing, the same angle of attack.  

As the flow moved the color through the pins, the image was captured with a Panasonic 

video camera (Model #: PV-GS300).  The camera was placed to capture the image from a 

birds eye view above the flow tank and immersed wing model.  It was then transferred onto a 

computer to analyze the data using Pinnacle Studio MediaSuite Titanium Edition on a 

Gateway computer. 

 

We calculated leakiness as the ratio of the maximum velocity through the two middle pins 

over the maximum velocity around the wing.  Also taken into account is leakiness as a 

function of the distance from the edge.  This is different from how Cheer and Koehl 

calculated this value.  They described leakiness as the ratio of the measured volumetric flow 

rate through two pins over the volumetric flow rate in the inviscid case.  We also calculated 
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leakiness as the maximum velocity through the two pins at the end of the wing to the 

maximum velocity around the wing and compared it to the leakiness between the middle two 

pins. 

 

Results 

We took movies for the thirty-three cases described in the methods sections, each of the 11 

angles at each of the three spacing were recorded.  Some general trends we noticed were that 

leakiness decreases with decreasing angle of attack. Also, leakiness decreases towards the 

interior of the wing.  Reduced spacing greatly reduces the flow through the wing in all cases.  

Also observed was that the flow to the outside of the wings bends back around towards the 

inside as it moves past the wing, especially in the cases where the pin spacing was the 

smallest. 

 

Some representative movie clips are given in Fig. 5, A-E below.  For each pair of images, the 

first clip is a shot taken immediately after the dye was inserted.  They show the dye strip 

being parallel to the bristles.  The next picture is one taken at a later time in the same trial.  

This picture was taken after the dye was carried with the flow through the pins.  As you will 

notice in C, leakiness decreases towards the interior of the bristles.  Also, the pins reduce the 

flow, but do not act as a complete barrier.  As the angle of attack increases in D, the wing 

almost completely obstructs the flow as compared to the same spacing in C.   
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A.  

      
B.  

      
C.  

      
D.  
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E.  

Fig. 5.  Images captured of fluid flow through the pins at different spacing and angles of 
attack.  Each pair of images shows the initial insertion of die, parallel to the pins, while the 
second image is a demonstration of how the die was carried with the flow through the pins.  
The average Re for these images ranges from .023 to .047.  The flow in each of the images is 
moving from right to left.  At the top of the image is the free stream velocity which was used 
to compare to the flow through the pins.  For images A) The pins have 1 cm spacing for 0o, 
B) The pins have 1 cm spacing for 54o, C) The pins have ½ cm spacing for 0o, D) The pins 
have ½ cm spacing for 36o, E) The pins have ¼ cm spacing for 27o. 
 

The leakiness as a function of angle in degrees is plotted in Fig. 6 below.  Each angle was 

tested setting the peristaltic pump to two different speeds in order to compare leakiness at 2 

Reynolds numbers.  The graph in Fig. 6 shows the plots from all three spacing at the faster 

speed, where the average Reynolds number for all cases was about 0.047.  The results we 

expected are verified by this graph.  The 1 cm spacing allowed more flow through at a faster 

rate than the ½ cm and the ¼ cm spacing did.  In fact, the ¼ cm spacing blocked so much 

flow that only the 0o to 45o increments were tested, because any angle higher than that would 

have allowed an immeasurable amount of flow.  Each line on this graph represents each of 

the three different spacing of the pins.  For all three data sets the leakiness decreases as the 

angle increases, as we expected to see.  There is a fair amount of noise present in these 

graphs due to experimental error.  This error could have been caused by the dye being 

inserted at different heights for each case. Also, it is likely that some of the pins were not 
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evenly spaced or standing perfectly perpendicular.  There also could have been a difference 

with the thickness of the strip of dye inserted or the angle it was inserted at.   
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Fig. 6.  Leakiness as a function of angle in 9 degree increments from 0o to 90o, for Re .047. 
 

For the graph in Fig. 7, leakiness is expressed as a function of angle for the ½ cm spacing for 

Reynolds numbers of .047 and .023.  By observing this graph, one can see that a greater flow 

rate increases the fluid flow through the pins.  It can be assumed that this representation 

would be the same for the bristles on an actual insect wing.  These data plots show how even 

with the different rates of flow the leakiness consistently decreased with increased angle of 

the pins.   

 

The same variables of error are prevalent in this data as in Fig. 6 above, accounting for the 

noise in the graph.  The data for 0o and 9o are questionable as to their accuracy.  The data do 

not reflect what is predicted, i.e. the 0 degree plot seems too low while the 9 degree plot is 

too high.  The margin of error in this plot was created by the specific slide chosen to measure 

the data.  The image of 0 degrees had a very distinct pattern where the flow in the middle 

18 



pins was much less than the outer pins as demonstrated in Fig. 5C.  Another factor to this 

error could be the amount of time that was allowed to pass in the video before capturing the 

image used to measure the results. 
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Fig. 7.  Leakiness as a function of angle in 9 degree increments from 0o to 90o for Reynolds 
numbers of 0.047 (speed 3) and 0.023 (speed 2) for the ½ cm spacing. 
 

As can be seen in Fig. 8, leakiness varies between pins. The closer to the edge, the more flow 

goes through the pins. In Fig. 9, leakiness as a function of angle is shown using the 

measurements taken from the first pin gap rather than the middle one.  We found that in 

many cases there was more fluid allowed through the first pair of bristles than the middle 

ones.  Each individual graph shows a significant decrease in the leakiness as the angle 

increased, same as our other measurements within the margin of error.   
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Fig. 8.  0o degree angle with ½ cm spacing.  
Demonstration of the flow through the bristles 
being greater towards the outside of the bristles 
than the middle.  
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Fig. 9.  Leakiness as a function of angle for the angles of 0 degrees, 18 degrees and 45 
degrees, for a Reynolds number of about 0.047. 
 

Conclusion 

As mentioned before, the middle spacing of ½ cm represents the ratio between the diameter 

of the thrips bristle to the space between each bristle.  Accordingly, the 1 cm spacing is twice 

as large as the spacing of the bristles in an actual thrips wing.  All of the angles tested with 

this wing were always leaky except at really low angles of attack.  With this data, having an 

actual wing with this ratio of spacing wouldn’t work well.  In the case of the ¼ cm, there 
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were twice as many bristles.  For an actual wing perhaps this ratio isn’t leaky enough at high 

angles of attack to be effective. 

 

The most interesting result of this study is that leakiness changes significantly with the angle 

of attack.  These results might be of some help in the clap and fling motion because the 

greatest drag forces are generated when the wings are at a 90 degree angle of attack.  This is 

also the place where the wings will leak the most.  At 45 degrees, the wings act more like a 

solid plate.  So this effect coupled with changes in leakiness due to the force acting normal to 

the wing could really make the wings act like leaky rakes during fling and solid plates during 

the rest of the stroke.  

 

Some of the problems that arose from using dye were that the placement of the dye in the 

stream was not always at the same height and the dye didn’t always come out of the syringe 

in even amounts or perfectly parallel to the bristles.  An improvement would be to upgrade to 

Digital Particle Image Velocimetry (DPIV).  DPIV was originally developed to examine 

flows created for engineering purposes.  They have proven useful over the last few years for 

the study of biological fluid studies as well.  To use this technique the flow fluid must be 

injected with particles that will reflect light created by a laser.  One advantage to using DPIV 

over the system that we used is that DPIV uses a high particle seeding density which 

produces a velocity vector field.  The velocity vector field is so complete that there are no 

gaps in the field which will lead to a more precise study. 
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Of our experiments the models which best represented actual insect flight were the ones with 

the same Re and spacing.  Another improvement would be to measure the forces generated 

by each model.  For further research one idea that should be studied is to use a bigger range 

of Reynolds numbers.  The Re for thrips flight is about 10-2, and a good study would be to 

see how the results changed with a different Reynolds number.  When comparing the lift 

across Reynolds number, one must remember to compare lift coefficients rather than straight 

lift. 
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List of Symbols and Abbreviations 
 

DF   drag force per unit length 

LF   lift force per unit length 
l  diameter  of bristle 
LEV  Leading Edge Vortex 
Re  Reynolds Number 
U   free stream velocity of the fluid  
M  first moment of vorticity 

fR    space occupied by fluid 

nR    region of negative vorticity  

0R    region of negligible vorticity 

pR    region of positive vorticity 

∞R   infinite space  
S   space occupied by the object  
u(x,t)  fluid velocity 
x=(x,y)  position vector 
µ   dynamic viscosity 
ρ   density of the fluid 
|ω|  absolute value of vorticity 
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