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With relatively recent discoveries in mathematical approaches to pricing financial instruments,

much research has been performed seeking to create more accurate models to be used for investment

purposes. One of the areas studied is how to price debt, often in the form of bonds, which companies

sell in attempts to raise capital with the promise of interest payments of some sort. This investment

involves risk due to the chance that a company may go bankrupt and pay back less than the

total owed debt, or possibly none at all. There are indicators which may be used to measure a

company’s riskiness, also called credit ratings, which are independently created by organizations

such as Moody’s or Standard and Poor’s. They measure the quality of the debt issued by companies,

particularly the likelihood of default for a company. This helps investors decide how much should

be paid for a given bond. However, an impediment to analyzing the credit risk is the variable

nature of firms’ credit ratings, which fluctuate with time. The ratings can change as the company

does or does not have the earnings they were expecting for that year, or as consumer confidence

changes. Theories of mathematical finance may be used to price derivatives on financial securities,

thereby giving investors information on the riskiness of an investment. Some of the means by

which the prices of these derivatives is determined will be discussed, along with areas where some

improvements may be made.

Theories for pricing financial derivatives are subject to the accuracy of models used which

describe the stochastic nature of credit risk. Many of the models which I have studied use the

probability of default for a company to price the time zero value of a bond sold by this company.

For example, Jarrow and Turnbull derive bond-pricing formulas which use calculated pseudoproba-

bilities of default given by the initial term structure of debt.[1] Its methods are based on the chance

a company will default, and also gives values for recovery rates on the investment, the percentage
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salvaged if a company does go bankrupt. Though the calculated pseudoprobabilities of default

in this paper are sufficient to make the market complete with no arbitrage opportunities, this is

based only on the initial term structure. Over a larger time horizon, the probability of default

is difficult to estimate with a great amount of accuracy. Other methods base the probability of

default on past observations,[2] but it is still difficult to accurately depict what actually occurs.

This is because a firm with a high rating may slowly default, moving from higher credit classes to

lower credit classes until it defaults. Other firms may swiftly decline, skipping credit classes. These

aggregated observations are taken into account for future predictions. This means that anomalous

behavior may have been previously exhibited, further impairing efforts to accurately model this

default probability. Because of this, a lot of research is being done to improve modeling of which

default probability to prescribe.

This problem can be simplified by using a Markov chain process for the probability of change in

credit rating for a given firm. It is assumed that the Markov assumption holds, that the previous

credit rating is the only relevant information for determining the next state of a company’s credit

rating. The reasonableness of this assumption is debatable for several reasons. One of these reasons

deals with momentum effects. This is when the chance of a downgrade is increased by a previous

downgrade, or the chance of an upgrade is decreased by a previous downgrade, as studied in [3, pp.

97-102]. Disregarding these momentum effects, a Markov chain can be produced from a generator

matrix created by collecting data on firms. The elements of this matrix may be computed by

approximating the probability of jumping from one credit class to another by past movements.

The probability of moving from credit class A to B is equal to the number of firms which moved

from A to B divided by the total time spent by firms in A. This is reasonable, since we can

only base future observations on what has happened in the past. Repeating this process for every

combination of firm movements gives a generator matrix, Λ. The ijth entry of the matrix is given
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as the observed likelihood for a company moving from the ith credit class to the jth credit class.

The maximum likelihood estimator for a time horizon t is P (t), which may be approximated using

a Taylor’s expansion series, [3]

P (t) = etΛ =
∞∑

k=0

(tΛ)k

k!
, t ≥ 0.

Deriving P (t) from the generator matrix is useful because it gives non-zero probabilities to some

unlikely events. For example, it may give a probability of .005 for the chance of default from the

highest credit class to default in one step, despite there being no observed transitions of this sort

in the data. The last column of this matrix will give the probabilities for default, which is used by

pricing methods as described earlier. The bottom row is filled with 0’s and a terminating 1 in the

lower-right entry, meaning that there is no chance for a company to return to a non-default rating

after defaulting.

The purpose of my current research, funded by a VIGRE Grant and supervised by Professor

Jingyi Zhu, is to create a more accurate pricing method which allows for seasonal periodic fluctua-

tions in credit ratings. This would use the same sort of pricing model as [1] or [2], but it would seek

to more accurately depict fluctuations which occur in the probabilities of default and changes in

credit classes. This would be a better description because the current model assumes a generator

matrix which is the same from year to year. This does not make intuitive sense, since markets are

constantly fluctuating, and more information may become available at a later date. Credit rating

models should reflect this phenomenon, and some efforts have been made to study it by using a

nonhomogeneous Markov chain as in [3, pp. 150-152].

What I have worked on so far is using a matrix Λ(t) which consists of the standard generator

matrix Λ created from analysis of Standard and Poor’s bond price information and another matrix,
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Λ0(t). The first matrix is created using the spread, the difference between the Treasury Bill’s

interest rate and the rates given by firms of different credit classes. This defines the stationary

portion of the matrix, Λ, and then the periodic term is introduced. This is using a matrix Λ0(t),

which is multiplied by ε and cos(ωt), ε and ω constants, to control it’s influence and make it periodic.

This matrix has not been determined as of yet, so a simple symmetric matrix which follows the

basic rules of a generator matrix is used. This makes it so that adding the two generator matrices Λ

and Λ0(t) creates a new generator matrix. What needs to be done is research what form the Λ0(t)

matrix should take, and then adjust the values to make it better approximate the actual values.

So far, this method has produced results that are similar to what is desired. Basing the values

off of the spread alone seem to eliminate certain forms of market behavior, which generally tend

to inflate the price of bonds, so this may be more accurate in a sense. However, a lot of further

research must go into it to be of any use.

This problem has many facets, and is interesting due to the number of factors which affect the

answer. Since the market for things such as bonds is constantly changing, it is difficult to really

claim that a great model can be produced. However, research into creating a more-improved model

is warranted as it is very important for determining prices of certain financial instruments. It also

helps to portray the status of different firms, and how that can change over time.
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