
Using Rays of Light and a Mirror to Determine the Makeup of theBody of an ObjectScott MecklerJuly 7, 20041 The ProblemIn physics, objects have a property known as an attenuation coe�cient. This is a number with thedimension 1/length that measures the relative change in intensity of light that passes through agiven portion of the object. If we denote f as the attenuation of the object, �x as the length ofthe portion of the object through which the light passes, I0 as the initial intensity, and �I as thechange in intensity as it passes through the object, then we obtain the formula�II0 = f�x (1)1.1 Direct ProblemIf we know the attenuation coe�cient of the object and the portion of the object through which alight passes, from (1) we can derive the relative change in intensity of the light. If we were to passa light through an object that does not have a uniform attenuation coe�cient (i.e. the attenuationcoe�cient at a given point in the object is a function of its position), then we could take thesum of all of the attenuation coe�cients at each part of the object multiplied by the lengths ofthe portions of the respective parts through which the light passes. If we let there be n di�erent"sub-objects" that represent the parts of the object with di�erent attenuation coe�cients, then (1)would transform into �II0 = nXk=1 fk�xk (2)So, let's say that we have a cross-section 
 of an object that does not have a uniform attenuationcoe�cient (and whose various attenuation coe�cients are known) and it sits in a material z that1



has a uniform attenuation coe�cient. Let's also say that there is a mirror on one side of 
 and weshoot rays of light through 
 from the side opposite the mirror. We will shoot rays from a source,they will travel through 
 and reect against the mirror (assuming no absorption of the light bythe mirror) and then travel back through 
, where they will then be picked up and their intensitieswill be measured by a detector on the same side as the source. Knowing the attenuation coe�cientsof all of the subsections of 
, we should be able predict what the relative changes in intensity willbe using (2).1.2 Inverse ProblemI propose the question of whether or not we can determine what the attenuation coe�cients of thesubsections of 
 (as de�ned above) by knowing just the relative changes in intensity of a set ofrays of light that travel through 
, reect against a mirror, and then travel back through. If thisis possible, then we can let the amount of subsections of 
 approach 1 and thereby represent theattenuation coe�cients continuously throughout 
 as a function of the position. Once we have anearly continuous representation of the attenuation coe�cients in 
, we can then begin to assertwhat the actual make-up of the insides of 
 are.1.3 Cases of Inquiry1.3.1 Case 1Suppose 
 to be in the shape of a rectangle (for the sake of simplicity). Let's then assume thesubsections of 
 are equally-spaced diagonal partitions whose dividing lines make an angle � withthe horizontal. Each partition of 
 would have its own attenuation coe�cient and the partitionswould thus work to discretize 
.1.3.2 Case 2Suppose 
 to be in the shape of a rectangle (again, for the sake of simplicity). Let's then assumethe subsections of 
 are boxes within 
, thereby discretizing the area of 
 into rectangles. We willassume that there are n partitions along the horizontal and � partitions along the vertical. Wethen assume that the attenuation coe�cient is uniform within the area of each box. By discretizing
 into enough rectangles (taking their length (h) and height (g) to be su�ciently small), we canapproximate a continuous representation of the attenuation coe�cient of 
. Also, if we know theshape of 
 to be di�erent than a rectangle, we can simply �ll in the attenuation coe�cients ofwhichever boxes we wish around the perimeter of the rectangle in such a way to leave the shape of
 within the rectangle.
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, whether it be in accordance with Case 1 or Case 2, it is �rst necessary toplace 
 on a Cartesian coordinate system. This is most sensibly done by placing the lower-leftcorner of 
 at the origin. The length and width (height) of 
 are given as L and W , respectively.We can divide L into n partitions, and denote the length (or step-size) of each of these partitions ash. Once the horizontal is partitioned, there will be points on the x-axis corresponding to where thedividing lines lie. I am choosing to call these points nodes. The rays of light which are material tothe problem will enter and exit 
 only through these nodes. So, each ray of light can essentially becharacterized by the node it enters and the node it exits. The left-most node will be denoted the 0thnode and the right-most node will be denoted the nth node. So, the negative relative change of theintensity of the light entering through the jth node and exiting from the kth node will be denotedas Hj;k. So, if we denote the amount of partitions over which the ray spans (i.e. the di�erence inthe nodes through which the ray enters and exits) as m, then a ray entering through the ith nodewill exit through the (i+m)th node. Therefore, the negative relative change in intensity associatedwith such a ray would be Hi;i+m.2.1 Case 1Let's say we pass rays of light through 
 from our �rst case of the inverse problem in the waydescribed above. Let's denote yu (the u standing for "up") as the line that represents the ray oflight before it hits the mirror. Let's similarly denote yd (the d standing for "down") as the linethat represents the ray of light after it hits the mirror. The following computation, as well as all3
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Figure 2: Case 2subsequent calculations and formulas from here on in are based in the principles of geometry andtrigonometry. It can be shown that the distance the ray of light travels through z, the area inbetween the mirror and 
, is sdW+D where s is the total distance traveled by the ray of light (fromthe source to the detector). It can also be shown thats =p(mh)2 + (2(W +D))2In fact, every distance computed dealing with this problem has in it an sm factor. So, rather thancomputing the actual distance traveled through each area, we can compute the distance coe�cient(the distance divided by the factor sm). In the case of the coe�cient of the distance traveled throughz, it would be mDW+D (i.e. sdW+Dsm . So, we will label this distance coe�cient as � and we get� = mDW +Dwhere � is the distance coe�cient through z. We can also compute the coe�cient of the distancetraveled through 
 by either yu or yd (it doesn't matter which one, both coe�cients will be equal) tobe mW2(W+D) . We can compute that tu, the coe�cient of the distance traveled through the completeheight of a partition (i.e. any partition besides possibly the last one, through whose height yu maynot completely pass), is
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tu = mh tan�2(W +D) +mh tan�Because we now know the coe�cient of the distance traveled by yu before z and the coe�cient ofthe distance traveled by yu through a complete partition, we are now able to calculate , whichwe'll use to denote the number of complete partitions through which yu travels. We get = bW (2(W +D) +mh tan�)2h(W +D) tan� cWe now know how many partitions through which yu passes completely and what the distancecoe�cient is for each partition. The distance coe�cient for the last partition (if there is onethrough which yu does not pass completely) would be mW2(W+D) � tu, which is just the coe�cient ofthe total distance traveled by yu subtracted by the number of complete partitions  passed by yumultiplied by the distance coe�cient tu of each of the partitions. So, for a ray of light (i;m) (wherei is the node through which it enters and m is the number of partitions it spans horizontally) weare given a distance coe�cient for the (i+1)th through the (i+ +1)th partitions. Without doingany extra work, the ray also gives us a distance coe�cient for the �rst through ith partitions, whichis just 0 as the ray does not pass through them. One can also repeat this work with yd. The onlydi�erence is that the actual partitions through which yd passes depend more so on �. There aretwo instances for which to account, one being when � + � < �2 , and the other when � + � > �2 ,where � is the angle that the ray of light makes with the normal to the horizontal. First, let'saccount for when � + � < �2 . In this case, yd1 (as we'll call it) can hit many of the same partitions5



as does yu. We know the distance yd1 travels through 
 and we can compute td1, the coe�cient ofthe distance traveled by yd1 through a complete partition. We can derive thattd1 = mh tan�2(W +D)�mh tan�And then, by using this, we can compute �1, which I am denoting as the number of completepartitions through which yd1 passes. This yields us�1 = bW (2(W +D)�mh tan�)2h(W +D) tan� c
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Figure 3: � + � < �2So, we know the �rst partition (in ascending order) through which yd1 passes is the (i +m+ 1)thpartition, and we know yd1 passes through �1 partitions completely. We are therefore given distancecoe�cients of the ray (i;m) for the (i + m + 1)th through the (i +m + �1)th partitions. Then,we can also get the distance coe�cient for the last partition through which yd travels (i.e. the(i+m+�1+1)th partition) by taking mW2(W+D) ��1td1, similarly to how we did it with yu. We also6



know that the distance coe�cients of yd1 for the (i+m+�1+2)th through the (n+G)th partitionare all 0, as it does not pass through them. The quantity n + G is simply the total number ofpartitions of 
. Where G = dWh cot�eThe other instance for which we must account is that in which �+� > �2 . In this case, yd2 (as we'llcall it) can hit at most one of the same partitions as does yu. We can compute td2, the coe�cientof the distance traveled by yd2 through a complete partition to betd2 = mh tan�mh tan�� 2(W +D)Using the following, we can compute �2, the number of complete partitions through which yd2passes, to be �2 = bW (mh tan�� 2(W +D))2h(W +D) tan� cThe partitions through which yd2 passes through completely are the (i+m��2+1)th through the(i+m)th. The distance coe�cient for the �rst partition through yd2 passes, namely the (i+m��2)th,would be mW2(W+D) � �2td2. We also know the distance coe�cients from the (i +m + 1)th throughthe (n + G)th partitions to be 0, as yd2 does not pass through them. Once we compute all of thedistance coe�cients for yu, yd1, and yd2, we are given a vector of length n+G corresponding to eachof the three lines. The elements in each vector are the coe�cients of the distance traveled througheach partition by each respective line. In the instance where �+� < �2 , we add the vectors yu andyd1 to get a vector �i;m (the subscripts are there because we get a vector for each ray (i;m)). In theinstance where � + � > �2 , we add the vectors yu and yd2 to get �i;m. If we think of �i;m as a rowvector and f as a column vector also of length n+G with its elements simply being the attenuationcoe�cients of the partitions 1 through n + G, then the dot product of the two vectors should beequal to Ji;m. I am denoting Ji;m as Hi;i+m divided by the aforementioned distance factor of sm .We can express this as Ji;m = mHi;mp(mh)2 + (2(W +D))2We are left with the equation �i;m � f = Ji;m7
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Figure 4: � + � < �2This is true for i = 0; :::; n � 1 and m = 1; :::; n � i. This yields us 12n2 + 12n equations in n + Gunknowns. This system of equations can be represented as�f = jwhere � 2 R( 12n2+ 12n)�(n+G), f 2 Rn+G , and j 2 R 12n2+ 12n. To solve this system of equations, wecan right-multiply both sides of the system by �T to get�T�f = �T jTo solve this system, we need would ideally only to right-multiply both sides by (�T�)�1 to obtainf . We'd get f = (�T�)�1�T j
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Our solution f will be the best solution to match the either overdetermined or underdetermined(or, in the rare case in which 12n2 + 12n = n+G, square) system of equations we are given by therays we shoot.2.2 Case 2Let's say we pass 12n2 + 12n rays, each indexed as (i;m), through 
 as we did in the previous case.Let's take a look at what happens with the light before it hits the mirror (which I'll denote merelyas y). The line intersects with many of the dividing lines of our sample of 
. Since we have placed
 in a Cartesian coordinate system, we can determine the intersection of y with all of these lines,both horizontal and vertical. First let's look at the vertical lines. Notice that y only hits a partialamount of these lines before it exits 
. Let's denote the last vertical line it hits as the ath line,where a = b m�g2(�g +D)cThe equation of the N th vertical line is x = (i + N)h. The intersection of the N th vertical linewith y, which can be written as y = 2(�g+D)mh (x � ih) occurs at ((i + N)h; 2N(�g+D)m ). Now, if welook at the horizontal lines, we see that y hits every horizontal line before it exits 
. So, the lasthorizontal line it hits is the �th line. The equation of the M th horizontal line is y = Mg. Theintersection of the M th horizontal line with y occurs at ((i+ mMg2(�g+D) )h;Mg). We can let x1 be theset of (i+N)h for N = 1; :::; a, thereby representing the set of the x-coordinates of the intersectionsof y with the a vertical lines. We can also let y1 be the set of 2N(�g+D)m for N = 1; :::; a, therebyrepresenting the corresponding set of y-coordinates of the intersections of y with the a verticallines. Similarly, we can let x2 be the set of (i + mMg2(�g+D) )h for M = 1; :::; �, thereby representingthe set of the x-coordinates of the intersections of y with the � horizontal lines. We can also let y2be the set of Mg for M = 1; :::; �, thereby representing the corresponding set of y-coordinates ofthe intersections of y with the � horizontal lines. Let's take X to be the union of x1 and x2 sortedin ascending order, and Y to be the union of y1 and y2 sorted in ascending order. The two-columnmatrix (X;Y ) then represents every intersection of y with one of the dividing lines of our sectionof 
. We can de�ne a vector v to be the distance from an intersection of y with one of the dividinglines (i.e. a row of (X;Y )) from the point (ih; 0), the starting point of the ray (i;m). If we append0 to the beginning of v, and then we store the consecutive di�erences of v into a vector d, then dwill be the vector of the distances that y travels through each box. So, we havevk =qX2k + Y 2kfor k = 1; :::; number of rows in (X;Y ), and v0 = 09



And then, we have dk = vk � vk�1for k = 1; :::; number of rows in (X;Y ). Now, since we know the distances traveled by y in orderof when the distance is traveled, we need to determine the box through which each distance wastraveled. First, let's determine the coordinates of the box by a 2-tuple of the column in which thebox lies followed by the row. The total numbers of columns and rows would simply be n and �,respectively. The �rst column being the left-most column, the nth column being the right-mostcolumn, the �rst row being the bottom-most row, and the �th row being the top-most row. Withthis notation, it can be found that the box hit immediately after y intersects with the N th verticalline is the box (i+N + 1; �N + 1), where�N = b2N(�g +D)mg cThe box hit immediately after y intersects with theM th horizontal line is the box (i+�M+1;M+1),where �M = b mMg2(�g +D)cIn the same manner as we formed the matrix (X;Y ), we can form a two-column matrix (C;R),where C is the column-coordinate of each box hit and R is the row-coordinate of each box hit. Inorder to sort (C;R) into an order corresponding to the distances traveled through each box, weneed only to order the rows of (C;R) according to the sum (i.e. Ck + Rk for the kth row) of therows. If the rows are in such an order such that the sums of the rows go in ascending order, thenthe boxes will correspond to the distance y travels through them. Due to the symmetry of theproblem, we can produce another two-column matrix consisting of a vector of column-coordinatesand a vector of row-coordinates which corresponds to the boxes that are traveled through by thelight on its way back from the mirror. We can keep R the same as the vector of row-coordinates,however, we will have to come up with a new vector of column-coordinates, CC. We can do thiswith the formula CCk = i+ 2m+ 1� Ckfor every value of k corresponding to an element in C. So, we now know the distance traveledthrough each box by the ray (i;m). If the ray does not pass through a certain box, clearly thedistance traveled through that box by the ray would be 0. Using MatLab, we are able to represent10



every ray we pass through 
 by a row in a matrix by using the SUB2IND function. The SUB2INDfunction just transforms a quantity that has two indices (e.g. the rays which are indexed by i andm) into a row vector with only one index. By doing this for every ray we shoot, we generate a(12n2+ 12n)��n matrix. Where each row represents a ray we shoot and each column corresponds toa rectangular partition of 
 (since we've partitioned it on the horizontal by n and on the verticalby �, there are �n of these rectangular partitions). This matrix, which we can denote simply as A,will be multiplied by f , a column vector of the attenuation coe�cients of each of the boxes, and h,the column vector of all of the aforementioned Hi;i+m values. So, we get the system of equationsAf = hwhere A 2 R( 12n2+ 12n)�(�n), f 2 R�n , and h 2 R 12n2+ 12n. The same mathematics as were applied inCase 1 can be applied here to yield us f = (ATA)�1AThwhere f , as previously, will be the best solution to our system of equations which implies the mostsensible attenuation coe�cients within 
.3 The Results3.1 Case 1In Case 1, we were solving the system of equations we got from partitioning 
 on an angle � bysolving the normal equations. As would have been expected, the condition number of our matrix�T� was relatively small (less than the dimension of the problem) for � = �2 . The problem was verywell-conditioned and the dimension of the nullspace was 0, so there did exist a unique solution forf . As � decreased, the condition number of �T� uctuated while increasing on the average. Thenullspace remained 0 so the solution remained unique. As � approached 0, however, the conditionnumber blew up and f became virtually impossible to recover. This can be explained because eachray being shot through 
 would travel the same distances through the same partitions becausethey become merely horizontal layers. It is this case, actually, that will help explain the nullspaceof Case 2.3.2 Case 2Case 2 turned out to have a large nullspace. For the dimension of the problem, �n, the nullspacewould have a dimension of (� � 1)n, which increases rapidly as � and n increase. Since ourrepresentation of the attenuation coe�cients becomes more accurate as � and n both go to 1 and11
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Figure 6: � = 0our nullspace gets relatively much larger as � and n increase, the nullspace plays quite a signi�cantrole as our representation becomes more accurate. By using MatLab, we were able to produce agrayscale depiction of what arrangements of the attenuation coe�cients would be in the nullspace(i.e. which arrangements we would not be able to recover by the proposed method of shooting12n2 + 12n rays of light). By viewing these possible arrangements for various values of � and n, onecan deduce (or, more appropriately, intuit) why these arrangements would be in the nullspace. Inall of these arrangements, the sums of the columns of boxes of 
 seemed to all add up to the samenumber. In other words, for many of the rays, when they go through these certain arrangementsof boxes, will produce the same data. So, essentially, there will only be n elements of unique data.These elements will be the data reported when a ray only travels through one column, there beingn of the 12n2 + 12n rays that do this. So, these n rays correspond to the n vectors that correspondto a non-zero singular value of A. (Whereas the (� � 1)n vectors that span the nullspace of Acorrespond the the zero singular values of A). This occurrence was predicted by the results of Case1, in which the system where each of the rows had the same attenuation coe�cients could not berecovered (the condition number of the system went to 1). In an attempt to regularize the system
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ATAf = ATh (3)I added �I�n to ATA on the left side of the equation, where � > 0 and Ia is the a � a identitymatrix. This gives us (ATA+ �I�n)f = ATh (4)I used MatLab to produce a random column vector of length �n to represent a solution f0 to (3). Ithen set h equal to Af0. Using this h, I utilized MatLab to �nd the least-squares solution f to (4).To �nd the f that best approximates f0, I minimized the 2-norm of f � f0 with respect to � andfound that f is most accurate when � � 10�5. When � becomes smaller than 10�5, the 2-norm off � f0 tends towards the same value as if � = 0. So, if we add 10�5I�n to our left-hand operator,our solution is optimized.4 The FutureAlthough f may have been optimized using the proposed method, I am certain that there is muchmore that can be done to obtain an even more accurate solution to the problem. Later researchmay consist of assuming 
 is periodic, rather than just a �nite blob, as it were. In the results, itwas noticed that there was an ideal multiple, �, of the identity matrix to add to our operator inorder to best regularize the problem. It was never realized, however, why the actual ideal valueof � we found would work the best. Further research can be done in an attempt to discover moretruths about this particular inverse problem and possibly help explain why such a value of � wouldwork best. Of course, since all of this research was done in the better part of only six weeks, it wasnot as thorough as I would have liked. If more time were allotted to the problem, I would havede�nitely liked to have seen what would happen if we set certain boxes around the perimeter of 
to the same attenuation coe�cient as the surrounding material, z, and examined the case in whichwe tried to determine the attenuation coe�cient through a cross-section that is not so "pretty". Itmay also have been interesting, if not of the utmost di�culty, to look into partitioning 
 with linesthat weren't only parallel to the horizontal and vertical (e.g. diagonal lines, circles, parabolas, etc.)Even further inquiry can take into account Snell's Law of Refraction (n1 sin �1 = n2 sin �2) when thelight travels through 
 and possibly determine a correlation between an object's refractive indexand its attenuation coe�cient (perhaps one depends on the other, which would make the problemquite a bit more complicated). All of these ideas and more would make interesting research for thefuture of this problem; I only hope that I can some day perform the actual research (or, at least,hear the results of someone who has performed it).
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