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Abstract

Diffuse tomography is similar to classic tomography, except that the wave being sent through
the body can be diffracted and thus does not travel in a straight line. The data available to the
inverse tomographer is a matrix of the probabilities of a photon entering a given border site,
and exiting a given border site. The process is modelled using a rectangular grid, where the
photon is able to move in straight lines between the nodes. The probability that the photon
moves in a given direction is dependent on its previous positon, and since there are four possible
directions to travel due to the rectangular model, there are 16 parameters per pixel. Simple cases
are examined. The forward problem of taking in the parameters at each pixel and producing
the data is solved, and is used in an algorithm to numerically approximate solutions to two
examlpes.

1 Introduction

Classical tomography reconstructs information about the inside of an object by sending high en-
ergy waves through the object and measuring the difference in intensities. Because of their high
energy, these waves, x rays are a common example, travel in straight lines through the object, and
mathematical methods exist for imaging the inside of the body using this information. However, it
is desirable to use waves with less energy to image the inside of the object, because of the harm that
high energy waves have on the human body. The problem that results from the use of lower energy
waves, such as visible light, is that they do not travel in a straight line, which renders the existing
mathematical models for imaging by x rays unusable. This problem is called diffuse tomography;
attempting to image the inside of a body using waves that can diffract upon entering the body.
In understanding the inverse problem, it is necessary to understand the model used to describe
the process. Consider an M x N grid of pixels, as shown in Figure 1. A device exists to shoot a
photon into the system from each of the outside edges, called ports of which there are 2(M + N),
and another device exists at each port which detects the arrival a photon at that port. As a photon
enters a pixel, there is a probability that the photon turns by increments of 90 degrees, dependent
upon which direction it enters the pixel. Photons do not interact inside the body. Thus the future
state of the photon is dependent on both the current pixel of the photon, and the previous pixel
the photon was at. The process thus described is a Markov process. There are three different types
of Markov states, incoming, outgoing, and hidden. Incoming states are those paths that enter a
pixel from the outside of the grid. Outgoing states are the paths which travel backward relative
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to the incoming states. Any other state is called a hidden state. Each type of state contains many
states, each of which is given a number according to Figure 1. Incoming and outgoing states that
are identical except for opposite directions are given the same number. The data from the model
is the data matrix @, a 2(M + N) x 2(M + N) matrix, where the entry in cell 7, j is the probability
that a photon that enters the system at port ¢ will leave the system at port j. This data matrix is
the data that is available to the inverse tomographer. The probability of a photon traveling a given
direction coming from a given direction at each pixel are the parameters which are being recovered.
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Figure 1: General Setup

2 Simple Cases

The easiest possible case is a 1 x 1 grid, a single pixel. In this case, the data matrix () contains the
exact probabilities for the pixel, and no further work is required. However, the 1 x 1 case is not very
enlightening for further examination of the problem. Figure 2 shows the next simplest case, two
pixels next to each other. Consider the case in which the photon’s future direction is independent
of its previous pixel. In this case, simple formulas exist for each entry in the data matrix ). Name
the probability of starting from pixel 7, j and going down, d;;, going left, [;;, going right, r;;, and
going up, u;;. Thus the probablitiy of entering port 1 and leaving port 1 is



B = i 11
Q(l, 1) = ;(dnum) = m (1)

because the sum is a geometric series. Similarly one can write an expression for the probability of
entering port 2 and leaving port 1

B . i liusr
Q(2,1) = unln ;(dllum) 1 diwl u21Q(1,1) (2)

again, because the sum is a geometric series. Because all entries of Q are known, we can solve
for ugy by using (1) and (2). Using similar methods with Q(2,2) and Q(1,2) will yield d;;, and
once these are known the geometric ratio is known and all other probabilities at each cell can be
computed. While the 2 x 1 example is more enlightening than the 1 x 1 case, it provides no tools
for dealing with larger grids in which the expression for Q(i,j) is not a simple geometric series.
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Figure 2: 2 x 1 case, border numbers indicate port numbers

3 The Forward Problem

The general forward problem has an explicit solution as given by Patch [1]

Q = Pio + Py (I — Pyp) ' Pho, (3)

where Pj, is a probability matrix with P;,(7, j) being the probablitiy of entering an incoming state
i and immediately exiting through an outgoing state j. Py, is a probability matirx with Py, (4, j)
the probability of going from incoming state i to hidden state j. Py is a probability matirx where



Pup(i,j) is the probability of going from hidden state ¢ to hidden state j. Py, is a probability
matrix where Py, (4, 7) is the probability of going from hidden state i to outgoing state j.

Thus, given the probabilities at all the pixels, the matrices P;,, P;p,, Pup, Pro can all be derived.
The use of a computer makes it possible to easily calculate an arbitrary M x N case quickly, using
the state numbering scheme given for Figure 1. Figure 3 is the 15 x 15 case, where the photon’s
future state is independent of its previous state, the probability of going up or left at every cell is
.45, and the probability of going right or down at every cell is .15.
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Figure 3: Data from skewed 15 x 15 square

4 Approximating a Solution

Having an implementation of the forward problem for any given set of probabilities, it becomes
possible to recover approximations to the actual set of probabilities given a set of data ) using the
gradient descent method. In approximating a solution, the assumption is made that all information
about Pj,, P;n, and Py, are known. This makes physical sense, as the exterior of the object in
question is available to examine without the need of tomography. It also simplifies the process
without losing the most interesting part of diffuse tomography, the recovery of the inner, hidden
probabilities. Thus the only probabilities that are allowed to vary are those probabilites in the
matrix Ppp.

4.1 Calculating a Gradient

In order to calculate a gradient, we must first define a function of which we can take the gradient.
Let



k

J(P) =Y I(F(P) = Q)eill3,

i=1

where P = Py, and F(P) is the 2(M + N) x 2(M + N) matrix that represents the data calculated
with an arbitrary matrix P, @ is the actual data matrix, e; is a 2(M + N) vector of all zeros except
a 1 in the i** spot, k is the number of columns of @, and the norm used is the I2 norm. Minimizing
J will be the approach in approximating a solution to a given data matrix. The Gateaux derivative
of J at P in the direction §P is

k

DJ(P)(6P) =) (DF(P)(6P)e;, (F(P) — Q)es), (4)
i=1

where DF(P)(6P) is the Gateaux derivative of F at P in the direction JP, and the inner product
is the standard dot product on R", n € Z, n > 0. Using the fact that

DF(P)(6P)e; = Pi(I = P)"'(6P)(I — P)™ ' Phoe; ()

a formula for the gradient of .J is found explicitly. Combining (4) and (5) and correctly manipulating
the expression one gets

DJ(P)(6P) = (0P, [(I — P)"'|" P (F(P) = Q)Py,[(I = B)7']") (6)

Thus the gradient of J at P is the second term of the inner product, keeping in mind that P, and
P, are known by assumption.

4.2 Gradient Descent Method

Having calculated a gradient, it is now possible to approximate a solution to a given data matrix.
The algorithm to be used is the gradient descent method. First a guess is made at the answer, and
the gradient in (6) is calculated at that point. The guess is then modified by subtracting h, a small
increment with h > 0, times the gradient calculated. The probabilities being recovered must be by
their very nature must be in the interval [0, 1]. If the gradient calculated results in a probability
falling outside the interval [0, 1], that probability is instead left unchanged. If J calculated at the
modified guess is greater than a set tolerance, the modified guess is taken as the guess, and the
gradient is recalculated and a new guess generated. At this point it is important that the forward
problem is already solved, because without the forward problem, J could not be calculated. This
process is continued until J is less than the desired tolerance. This method is assured to result
in an area surrounding a local minimum, so that with a sufficiently small tolerance (and enough
patience), the probabilities to a solution can be recovered.



5 Recovering Probabilities

Now that a method exists for approximating the solution given a data matrix, two different cases
are investigated. One is a situation that enjoys much symmetry and uniformity. The other is a
“tumor,” or anomoly that one might be looking for inside a body.

5.1 A Symmetric Probability Distribution

Consider a 5 x 5 square in which the future location of a photon is independent of its previous
location. The probability of going up and left is .45 and the probability of going down or right is
.05. The data matrix is first calculated so that the gradient descent method can be used. As a
guess, the photon is considered to travel independent of its previous position, and the probability
of going up, down, left, and right is .25. Using a step size of .01, and a tolerance of .05, the results
are shown in Figure 4. The graphs show the matrix P, the probability of going from a hidden state
to a hidden state. The general features of the actual probabilities are recovered, but the specifics
are quite poor. On average every entry is about 17 percent off of the actual value. This rather large
discrepency is not reflected in the output of the data matrix, however. The sum of the squares of
the differences between the entries of the actual data matrix, (), and the data matrix calculated
from the recovered probabilities is about .05. The problem is that the farther inside the grid a
pixel is, the less likely a photon is to ever reach that pixel. Thus the effect that the hidden states
have on the output data matrix, @), is rather small. In order to achieve higher accuracy, the step
size and the tolerance must both be lowered, which results in greatly increased computing time. It
took 736 iterations and about 10 seconds to produce the recovered results.
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Figure 4: Left Actual, Right Recovered

5.2 Recovering an Anomoly

Again consider a 5 x 5 grid, but this time the photon’s future position is dependent on its previous
position. Specifically, coming from any direction and at all pixels the probability that the photon
goes straight is .97, and going left, right, or back all have probability of .01. In this set up, the



diffraction of the photons is small, and thus the problem approximates the classic tomography
problem. The center cell is different than the rest of the cells, the future state of the photon upon
entering the center cell is independent of its previous position with probability of turning .25 in all
directions. Thus the center cell acts as a “tumor”, or anomoly, that one would want to be able to
recover using diffuse tomography.

Using this setup, the forward problem is solved and the data matrix @ is produced. Similar
to the last section, the gradient descent method is used with the same intial guess, step size, and
tolerance. From the data recovered, 16 images of the grid can be formed, one image for each
possible combination of previous and future state. These 16 possible images fall into three groups,
where the groups share similar features. Figure 5 shows the three different groups. The groups
are the probability of going into a pixel and continuing in the same direction, the probability of
going into a pixel and turning left or right, and the probability of going into a pixel and going back
in the opposite direction. Once again the recovered probabilities get a solution that shares large
scale features with the actual solution. The left/right recovered probabilities show a spike in the
middle corresponding to the anomoly. However, the spike is an about 8 percent over the actual
value, and there are fluctuations around the spike that are not present in the actual values. The
straight recovered probabilities show an inverse spike at the middle pixel, which corresponds to
the anomoly, and again is about 8 percent over the true value, with minor fluctuations around the
anomoly. The back recoverd probabilities show the most error. A ridge appears where there should
be a single spike. The ridge is inaccurate in the sense that the highest probability falls away from
the pixel with the anomoly.
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Figure 5: Left Recovered Back, Bottom Recovered Straight, Right Recovered Left/Right



6 Conclusion

Modeling the forward problem and using the gradient descent method provide a means by which the
probabilities of the grid can be recovered. However, the degree to which the recovered probabilities
resemble the actual probabilities is dependend on the tolerance which is used in the gradient descent
algorithm. However, the matrix Py involves many paths which are highly unlikely to occur, and
thus they do not affect the data in an appreciable manner. Thus, there is a high percentage of
error, as seen in the two examples shown. As the system gets larger, the innermost of the hidden
to hidden states become less and less likely to occur, and thus affect the data to an even smaller
amount. These probabilities are going to be the most difficult to recover with a high degree of
certainty.

7 Further Work

There are many areas of this problem which still can be explored. Instead of declaring the matrices
P, Py, Pp, to be constant, they can be assumed to change, and a new expression for the gradient
can be used. The Géateaux derivative of F' can be written as a matrix, and the singular value
decomposition can be viewed to find the size and shape of the nullspace. This will tell what types
of changes will not affect the data, and give an idea of what types of configurations are recoverable.
Further computer experiments can be run to see the behavior of the recovery for larger systems, and
different types of probabilities to be recovered, such as multiple anomolies. Pertinent to medical
imaging is the three dimensional case, which does not vary in any fundamental sense from the two
dimensional case studied here.
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