Inverse Problems in Additive Number Theory

Abstract

: Additive number theory is the study of sums of sets, or sumsets. For example the sumset $\mathrm{A}+\mathrm{B}=$ $\{a+b: a \in A, b \in B\}$. In inverse additive number theory problems information is know about the sumset and information about the original sets is deduced. One interesting problem to study is finding limits of sumsets; this is a direct problem. However, finding information about the sets which cause the extreme sumsets is an even more interesting inverse problem. This is what I will focus on.

Let all sets henceforth be strictly increasing sets of integers. Also let $A_{0}+A_{1}+\ldots+A_{h-1}$ be the sumset defined by $\left\{a_{0}+a_{1}+\ldots+a_{h-1}: a_{i} \in A_{i}\right\}$. If $A_{i}=A$ for $i \in[0, h-1]$ then the sumset $A_{0}+A_{1}$ $+\ldots+\mathrm{A}_{\mathrm{h}-1}$ is written hA and is called the h-fold sumset of A .

Lets first look at the simple case of 2A. Let $A=\left\{a_{0}+a_{1}+\ldots+a_{h-1}\right\}$.
Show that $|2 A|$ is minimal if and only if A is an arithmetic progression.

$$
\begin{equation*}
a_{0}+a_{0}<a_{0}+a_{1}<a_{1}+a_{1}<\ldots<a_{k-2}+a_{k-1}<a_{k-1}+a_{k-1} \tag{1}
\end{equation*}
$$

This gives $|2 \mathrm{~A}|$ lower bound, namely

$$
|2 \mathrm{~A}| \geq 2(\mathrm{k}-1)+1=2 \mathrm{k}-1
$$

This is the direct problem. Now that we know something about the sumset (the minimal size) we can try to attain information about A .

If $|2 A|=2 k-1$ then all elements of $2 A$ are in the set (1) and can be written as $2 a_{i}$ or $a_{i}+a_{i+1}$. Specifically,

$$
2 \mathrm{~A}=\left\{2 \mathrm{a}_{\mathrm{i}}: \mathrm{i} \in[0, \mathrm{k}-1]\right\} \cup\left\{\mathrm{a}_{\mathrm{i}}+\mathrm{a}_{\mathrm{i}+1}: \mathrm{i} \in[0, \mathrm{k}-2]\right\}
$$

Since

$$
a_{i-1}+a_{i}<2 a_{i}<a_{i}+a_{i+1} \text { and } a_{i-1}+a_{i}<a_{i-1}+a_{i+1}<a_{i}+a_{i+1}
$$

then

$$
2 a_{i}=a_{i-1}+a_{i+1} \text { or } a_{i}-a_{i-1}=a_{i+1}-a_{i} .
$$

Thus $|2 A|=2 k-1$ if and only if A is an arithmetic progression.

And now the most generalized sumset $A_{1}+A_{2}+\ldots+A_{h}$ where $\left|A_{i}\right|=k(i)$. Let $a_{i, j}$ be the $j^{\text {th }}$
element of the A_{i}, with $j \in[0, k(i)-1]$.

$$
\begin{gathered}
a_{1,0}+a_{2,0}+\ldots+a_{h, 0}< \\
<a_{1,0}+a_{2,0}+\ldots+a_{h, 1}<\ldots<a_{1,0}+a_{2,0}+\ldots+a_{h, k(h)-1}<\ldots \\
\cdot \\
\cdot \\
\cdot \\
\ldots<a_{1,1}+a_{2, k(2)-1}+\ldots+a_{h, k(h)-1}<\ldots<a_{1, k(1)-1}+a_{2, k(2)-1}+\ldots+a_{\mathrm{h}, \mathrm{k}(\mathrm{~h})-1}
\end{gathered}
$$

so

$$
\begin{equation*}
\left|\mathrm{A}_{1}+\mathrm{A}_{2}+\ldots+\mathrm{A}_{\mathrm{h}}\right| \geq 1+\mathrm{k}(\mathrm{~h})-1+\ldots+\mathrm{k}(1)-1=\left|\mathrm{A}_{1}\right|+\left|\mathrm{A}_{2}\right|+\ldots+\left|\mathrm{A}_{\mathrm{h}}\right|-\mathrm{h}+1 \tag{2}
\end{equation*}
$$

Show that $\left|A_{1}+A_{2}+\ldots+A_{h}\right|$ is minimal if and only if A_{1}, \ldots, A_{h} are each arithmetic progressions with the same common difference.

Part 1: Show that if A_{1}, \ldots, A_{h} are each arithmetic progressions with the same common difference then $\left|A_{1}+A_{2}+\ldots+A_{h}\right|$ is minimal.

Let $A_{i}=a_{i, 0}+d[0, k(i)-1]$ for $i \in[1, h]$. Then

$$
\begin{gathered}
\mathrm{A}_{1}+\mathrm{A}_{2}+\ldots+\mathrm{A}_{\mathrm{h}}=\mathrm{a}_{1,0}+\ldots+\mathrm{a}_{\mathrm{h}, 0}+\mathrm{d}[0, \mathrm{k}(1)+\ldots+\mathrm{k}(\mathrm{~h})-\mathrm{h}] \\
\left|\mathrm{A}_{1}+\mathrm{A}_{2}+\ldots+\mathrm{A}_{\mathrm{h}}\right|=\mathrm{k}(1)+\ldots+\mathrm{k}(\mathrm{~h})-\mathrm{h}+1=\left|\mathrm{A}_{1}\right|+\left|\mathrm{A}_{2}\right|+\ldots+\left|\mathrm{A}_{\mathrm{h}}\right|-\mathrm{h}+1
\end{gathered}
$$

Thus if A_{1}, \ldots, A_{h} are each arithmetic progressions with the same common difference then $\mid A_{1}+$ $A_{2}+\ldots+A_{h} \mid$ is minimal.

Part 2: Show that if $\left|A_{1}+A_{2}+\ldots+A_{h}\right|$ is minimal then A_{1}, \ldots, A_{h} are each arithmetic progressions with the same common difference.

Part 2 of this proof requires the assumption that for two sets of length m and n the minimal cardinality of the sumset, $\mathrm{m}+\mathrm{n}-1$ (by (2)), occurs if and only if the two sets are arithmetic progressions with the same common difference. I have written up a horrendously inefficient proof of this fact, but given it's atrocity I will omit it for the sake of the reader. Suffice it to say that it is true.

Assume that part 2 of the proof is true for $\mathrm{h}-1$. That is, assume

$$
\left|\mathrm{A}_{1}+\ldots+\mathrm{A}_{\mathrm{h}-1}\right|=\left|\mathrm{A}_{1}\right|+\ldots+\left|\mathrm{A}_{\mathrm{h}-1}\right|-\mathrm{h}+2
$$

implies that

$$
\begin{equation*}
\mathrm{A}_{\mathrm{i}}=\mathrm{a}_{\mathrm{i}, 0}+\mathrm{d}[0, \mathrm{k}(\mathrm{i})-1] \text { for } \mathrm{i} \in[1, \mathrm{~h}-1] \tag{4}
\end{equation*}
$$

First, we know

$$
\begin{equation*}
\left|\mathrm{A}_{1}+\ldots+\mathrm{A}_{\mathrm{h}-1}\right| \geq\left|\mathrm{A}_{1}\right|+\ldots+\left|\mathrm{A}_{\mathrm{h}-1}\right|-\mathrm{h}+2 \quad \text { (by (2)) } \tag{5}
\end{equation*}
$$

Given:

$$
\left|\mathrm{A}_{1}+\ldots+\mathrm{A}_{\mathrm{h}}\right|=\left|\mathrm{A}_{1}\right|+\ldots+\left|\mathrm{A}_{\mathrm{h}}\right|-\mathrm{h}+1
$$

then

$$
\begin{align*}
\left|A_{1}\right|+\ldots+\left|A_{h}\right|-h+1 & =\left|A_{1}+\ldots+A_{h}\right| \\
& \geq\left|A_{1}+\ldots+A_{h-1}\right|+\left|A_{h}\right|-1 \quad(\text { by (2)) } \tag{6}\\
& \geq\left|A_{1}\right|+\ldots+\left|A_{h-1}\right|-h+2+\left|A_{h}\right|-1 \tag{5}\\
& =\left|A_{1}\right|+\ldots+\left|A_{h}\right|-h+1
\end{align*}
$$

it follows that

$$
\left|\mathrm{A}_{1}+\ldots+\mathrm{A}_{\mathrm{h}-1}\right|+\left|\mathrm{A}_{\mathrm{h}}\right|-1=\left|\mathrm{A}_{1}\right|+\ldots+\left|\mathrm{A}_{\mathrm{h}}\right|-\mathrm{h}+1
$$

and thus

$$
\left|\mathrm{A}_{1}+\ldots+\mathrm{A}_{\mathrm{h}-1}\right|=\left|\mathrm{A}_{1}\right|+\ldots+\left|\mathrm{A}_{\mathrm{h}-1}\right|-\mathrm{h}+2
$$

By (4)

$$
\mathrm{A}_{\mathrm{i}}=\mathrm{a}_{\mathrm{i}, 0}+\mathrm{d}[0, \mathrm{k}(\mathrm{i})-1] \text { for } \mathrm{i} \in[1, \mathrm{~h}-1]
$$

Repeating the process excluding A1 instead of Ah in step (6) will give

$$
\mathrm{A}_{\mathrm{i}}=\mathrm{a}_{\mathrm{i}, 0}+\mathrm{d}[0, \mathrm{k}(\mathrm{i})-1] \text { for } \mathrm{i} \in[2, \mathrm{~h}]
$$

So

$$
\mathrm{A}_{\mathrm{i}}=\mathrm{a}_{\mathrm{i}, 0}+\mathrm{d}[0, \mathrm{k}(\mathrm{i})-1] \text { for } \mathrm{i} \in[1, \mathrm{~h}]
$$

Therefore if part 2 of the proof is true for $h-1$ sets then it will be true for h sets. Since we assume in (3) that part 2 is true for $\mathrm{h}=2$ and it is obviously true for the trivial case, $\mathrm{h}=1$, then if $\left|A_{1}+A_{2}+\ldots+A_{h}\right|$ is minimal then A_{l}, \ldots, A_{h} are each arithmetic progressions with the same common difference for all h.

Thus $\left|A_{1}+A_{2}+\ldots+A_{h}\right|$ is minimal if and only if A_{1}, \ldots, A_{h} are each arithmetic progressions with the same common difference.

