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1 Introduction and the existence of GJR—-GARCH

It has been observed that the variance of log returns of stock values is not constant
and it describes the volatility of the market. Engle (1982) and Bollerslev (1986)
introduced the GARCH(1,1) model to model the volatility in time series data.
They assume that the log returns satisfy the equations

(1.1) Yp = Op€x, —00<k <00
and :
(1.2) ol =ways + foi_;, —oo<k <o,

where (w, @, 3) is the parameter of the process. It is assumed that the errors
(innovations) €, —00 < k < oo are independent identically distributed random
variables. Nelson (1990) found the necessary and sufficient condition for the
existence of (yx, 0%), —00 < k < co. Lumsdaine (1996) used the quasi-maximum
likelihood method to estimate the parameters.

Glosten, Jagannathan and Runke (1993) modified the GARCH(1,1), giving
larger weight to negative returns in the volatility. In the GJR-GARCH(1, 1),

(1.2) is replaced by
(1.3) of = w+ onyp 1 I{yr-1 < 0} + cayf_ H{ye-1 2 0} + foii_y,

—00 < k < oc,where 8 = (w, a1, s, 3) is the parameter of the process.

We assme that
(1.4) w>0,8>0,0;20and s 2 0

and
€x — 00 < k < oo are independent identically

(1.5)
distributed random variables.

Using the recursion in (1.3) we get
02 = w + aryi_ T{yk-1 < 0} + oo 1 H{ye—1 2 0} + fof_,
(1.6) = w4 oge;_107_ I {€x-1 <O} + anel_ 02 _I{eg—1 > 0} + fo}_,
=w+ fof_y + M-105_1,

where
a1 = aiei__lf{ﬁk,l < 0} + agfﬁ_lj{fkmi 2 O}



Using the recursion in (1.3) backwards we get
0F = w+ N-105_,
= w + -1 + Ne-204_3)
=W+ wWng—1+ TTkml??kaU!%—?
(1.7) = W+ Wk—1 + M 1Mk—2(W + Tk—3)05_3

= W+ Wik-1 + Whk-17k-2 t+ Wk-1ﬂ_iz-2ﬂk-30§_3

= W Wik + Wk-1Tk—2 + =+ + Tt - ** Te=NO_N-
If there is a solution it must be in the form of
o
Ug = {1—{"21—[17}6_4} .
j=1 i=1
Our first result gives a condition for the existence of o3,

Theorem 1.1 If Elogng < 0, then

p{HiﬁWm}:L

j=1 =1
Proor: Let 7y = Elogne. By the Law of Large Numbers (cf. Durrett (1996))
we have
1
= Z logn.; — -~ almost surely.
i=1
The Strong Law of Large Numbers means that there exists a random variable jo
such that ‘
- Y
> logn-i < 54 if j 2 jo.
i=1
This yields

i ﬁ N-i = i exp (XJ: log vm)

J=1 z=1 ju= i==1

j= = i=jo i=1
Jo J o0

< Zexp (Z log nﬂ.,;) + z exp (—2-3)
j=1 =1 F=jo

Since 0 < €% < 1 by the convergence of the geometric series we conclude

Zexp( ) < 00,



completing the proof of Theorem 1.1.

Using Theorem 1.1 we have a necessary condition for the existence of a unige
solution of (1.3).

Theorem 1.2 If vy = Elogn; < 0, then
o
[ o
=1 =1
1s the unique stationary solution of GJR~-GARCH.

PRrROOF: We showed that o exists. It is clear that it is a stationary sequence,
since it is composed of independent identically distributed random variables. The
argument before the proof of the existence of o2 gives that it is a solution. Al-
ternately, just plug into the equation.

Next we prove the uniqueness. Assume that there exists another solution, 77
satisfying
Y = Trtk

and

2 __ 2
Tk = W + nk""ITk"]_'

Using the recursions again we conclude
g8 — 75 = noan-2 - n-n(oiy — T2p).
Using again the Law of Large Numbers and the condition v < 0 we obtain
N-1M-2°+1-n —> 0 as.

as N -+ co. Since o7 and 77 are stationary sequences, o2 5 and 72 are bounded
sequences in probability, we get

op—18 — 0
in probability, as N — co. This implies P{o2 = 7¢} = 1.

Conjecture If GJR-GARCH has a unique stationary solution, then ~ =
Elogmne < 0. It follows from our proof of Theorem 1.1 that there is no solution if
v > 0. We have to consider the case of v = Elogn, = 0 only.

2 The moments of GJR-GARCH

By Theorem 1.2 it is enough to study the moments of

00 F

x=¥1Tn

=1 =1
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We will use the following well-known inequality {cf. Hardy, Lettlewood and Pdlya
(1959)):

Minkowski’s inequality Let Xi,Xo,... be non-negative random variables. If
EXY <o0,1< v, then

S EXI<E (Z Xz-) < (fj(EX;’)”")
g1 te=1 i=1

and

iEX;’ <E (ij) < (i(EX;’)"") :

i=1 =1
Using Minkowski’s inequality, we find the necessary and sufficient condition
for the existence of EX".

Theorem 2.1 We assume that (1.4) and (1.5) hold and E'logng < 0.
(i) If En < 1, then EX” < cc.
(i) If Eqg > 1, then EX" = oc.

ProoF: By Minkowski’s inequality we have

(B = (E (1))

By condition (1.5) we get
J ¥ j j .
L (H W—z‘) =E]]n =B = Ew) -
gl g1 el
Using again the properties of the geometric series we conclude that
00 J v I/U o0 .
j
> (E (H n) ) =3 (ER)") <o,
3=1 1=1 Jj=1

completing the proof of (i).
Using the other half of Minowski’s inequality, similar arguments yield

(1) S () - S

F=1 i=1 i=1 1=}

since by assumption Ernj > 1. Hence (ii) is also proven.



3 Stability of the models

I investigated the stability of the GARCH(1,1) model. If there is no change in the
values of the parameters or GARCH(1,1) does not change to a different model at
an unknown time, according to the law of large numbers for dependent variables

1
Ly = z Z y? — Eo? as.
1<i<k

According to the CUSUM (Cumulative Sums) principle, Z; should be compared

to
> o
k+1<i<n
Hence 1 plotted the sequence
Sk = IZk - Lkl

Figure 7 shows a sample path of S;. It 1s easy to see that S, takes very large val-
ues if k is small or large. Let T, = maXj<k<n Sy and s, be the point where
S; reaches its maximum. 1 re[;eated the simulations 250 times resulting in
Tm, Tﬂ250) and 3(1) o, 299 1 also computed the empirical distribution

functzon of T{i), .. 250) deﬁned as

1 :
Fso(t) = 5= > HTH <t} 0<t<oo.

1<i<250

Figure 8 contains the graph of Fase(t). It shows that all T,gi)’s are large and there
is little variation between them. I tried other sample sizes and the shape of the
empirical distribution function changed very little when 250 was replaced with 50,
100, 150, 200 and 300. Figure 9 shows the clusters of st ) ,5%250 According
to the picture the the largest values are reached at the beglnmng or at the end
of the data. Essentially half of the maximum occured at the beginning and the

other half at the end. I conjecture that

Sp/n — € in distribution,

where

P{{=0}=P{{=1}=

The argument is the following: according to Aue et

g l\.')i"—'

1 (2005)

T, = max Sg — oo in probability
1<k<n

and for any ¢ > 0
max Si —
né<k<n-nd k s>
where n; is some random variable. Hence for any 6 > 0

P{s, <ndors, >n-—né}—1.
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By symmetry
P{s, < né} = P{sp, > n—nd}.

Thus we have

. . 1
Jim P{sp < _nc?} = ,Elﬁep{sﬂ >n-—ndé}= 5
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Figure 1

Graph of 4,1 < k<300, whenw=1,01 = 2,0 = .5, = .3
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Figure 2

Graph of 02,1 < k < 300, when w = 1,0y = .2,y = .5, 8 = .3
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Figure 3

Graph of #,1 < k<300, whenw =1,a; = 5,ap = .2, = .3
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Figure 4

Graph of 62,1 < k < 300, when w = 1,01 = 5,0 = 2, =3
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Figure 5
Graph of yx,1 < k < 300, when w = 1,y = .5,07 = .2, = .3 in the first

150 observations and 8 = .5 in the last 150 observations
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Figure 6
Graph of 07,1 < k < 300, when w = 1,0, = .5, 00 = .2, 8 = .3 in the first

150 observations and 8 = .5 in the last 150 observations
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Figure 7

Graph of Sg, 1 <k < 100 in case of GARCH(1,1) with w = 1,0 = .02 and 8 = 0.3
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Figure 8

Graph of Fs0(t) in case of GARCH(1,1) with w = 1, @ = .02 and 8=0.3



VL.2]

Graph of s,(i), 1 <7< 250 in case of GARCH(1,1) with w = 1,0 = .02 and 3 = 0.3
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Figure 9




