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1 Introduction

Although my project proposal stated that I would be working on aggregated time series
models, there is a considerable amount of information and background needed before
getting there. Thus, this final report consists mostly of ”setting the table” or giving the
proper background information to understand the models I will be getting into. This
part of my paper consists of showing recursive substitution, working with the backshift
operator, defining what a difference equation is, and what an autoregressive process is. I
am also aware that there may be some unclear statements since I continue to work with
my advisor on this matter.
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2 Autoregressive Process

Time series that are encountered in practice are often modeled and well approximated by
the autoregressive time series. The pth order autoregressive time series (AR(p)) is given
by the following equation

p∑
i=0

ρiXt−i = εt, t = 0,±1,±2, . . .

where ρ0 6= 0, ρp 6= 0 and the εt are typically assumed to be uncorrelated (0, σ2) random
variables.

In this project we will consider and explore the first order autoregressive time series
(AR(1)) process most commonly represented in the form,

Xt = ρXt−1 + εt t = 0,±1,±2, . . .

Before we begin exploring the AR(1) process however, we will first want to establish some
building blocks to better understand what the AR(1) process is.

3 Difference Equations

A difference equation is an expression relating a variable Xt to its previous values. For
example, say we want to know the value that X takes on at time t denoted by Xt. A
difference equation gives us an equation directly relating the value X at t to the value of
X at a previous period, say t− 1, plus another variable εt:

Xt = ρXt−1 + εt.

The εt are often referred to as the error terms and generally make up the variability that is
generated in the random variables from one time period to the next. We will also further
explore the constant ρ shortly. We can easily see from the formula above that the AR(1)
process is simply a first order difference equation, and upon further inspection we observe
that we can solve the equation by recursive substitution

Xt =ρXt−1 + εt

=ρ(ρXt−2 + εt−1) + εt

=ρ2Xt−2 + ρεt−1 + εt

=ρ3Xt−3 + ρ2εt−2 + ρεt−1 + εt

...

=ρt+1X−1 + ρtε0 + ρt−1ε1 + · · ·+ ρεt−1 + εt,

where X0 is the initial value. This of course can be generalized to the case where the
initial value is Xt−N . For example, say we want to know the value of X at time t and we
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know the value of X N periods prior (Xt−N). Recursive substitution would give

Xt =ρXt−1 + εt

=ρ(ρXt−2 + εt−1) + εt

=ρ2Xt−2 + ρεt−1 + εt

=ρ3Xt−3 + ρ2εt−2 + ρεt−1 + εt

...

=ρNXt−N + ρN−1εt−(N−1) + · · ·+ ρεt−1 + εt.

Now we come back to the constant ρ. We observe that the effect of εt−(N−1) on Xt is
ρN−1. Thus for |ρ| < 1, ρN−1 geometrically goes to zero. Whereas when |ρ| > 1, ρN−1

grows exponentially over time. Thus, if |ρ| < 1 the system is considered stable, in other
words the further back in time that a given change occurs the less it will effect the present.
The given change will eventually die out over time. For |ρ| > 1 the system blows up. A
given change from the past increasingly effects the future as time goes on. It is probably
intiuitively obvious that we want a system that is effected less the further we go in the
past. Thus,throughout this paper we will use the assumption that |ρ| < 1.

4 Backshift operator

A useful operator often used in time series is known as the backshift operator denoted
by the symbol L. Let {an}∞n=−∞ be a sequence. By applying the backshift operator we
obtain a sequence {an−1}∞n=−∞:

Lan = an−1.

noindent Applying the backshift operator twice would give:

L(Lan) = Lan−1 = an−2.

Applying the backshift operator twice is denoted by ”L2”, therefore, we could rewrite the
above equation as

L2an = an−2.

In general shifting the time series back k steps is represented by

Lkan = an−k.

We now return to our difference equation:

Xt = ρXt−1 + εt

and observe this can be rewritten using the backshift operator:

Xt = ρLXt + εt
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using a little algebra we obtain the equations:

Xt − ρLXt = εt

or (1− ρL)Xt = εt.

⇒ Xt =
1

1− ρL
εt.

Now lets apply the operation (1 + ρL + ρ2L2 + · · · + ρN−1LN−1) to both sides of the
equation to get

(1 + ρL + ρ2L2 + · · ·+ ρN−1LN−1)(1− ρL) = (1 + ρL + ρ2L2 + · · ·+ ρN−1LN−1)εt.

We now expand the left side of the equation

(1+ρL + ρ2L2 + · · ·+ ρN−1LN−1)(1− ρL)

=(1 + ρL + ρ2L2 + · · ·+ ρN−1LN−1)

− (ρL + ρ2L2 + · · ·+ ρNLN)

=(1− ρNLN)

and substitute it back in to get

(1− ρNLN)Xt =(1 + ρL + ρ2L2 + · · ·+ ρN−1LN−1)εt

⇒ Xt =ρNXt−N + ρN−1εt−(N−1) + · · ·+ ρεt−1 + εt.

Note that this equation is exactly the same equation obtained using recursive substitution.

5 AR(1) Process

As noted previously the AR(1) process satisfies the difference equation

Xt = ρXt−1 + εt t = 0,±1,±2, . . .

In order to better work with this equation we would like to find a unique solution for Xt

that is both stationary and a function of the error terms. We’ll first need to start with
some definitions.

Let (Ω, F, P) be a probability space and let T be an index set. A time series can be
considered a collection of random variables {Xt : t ∈ T}. The joint distribution function
of a finite set of random variables (Xt1 , Xt2 , . . . , Xtk) from the collection {Xt : t ∈ T} is
defined by

FXt1 ,Xt2 ,...,Xtk
(xt1 , xt2 , . . . , xtk) = P{ω : Xt1(ω) ≤ xt1 , . . . , Xtk(ω) ≤ xtk}.
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Definition 1 (Stict Stationarity): The time series is said to be strict stationary if the
joint distribution of (Xt1 , Xt2 , . . . , Xtk) is the same as that of (Xt1+h

, Xt2+h
, . . . , Xtk+h

),
that is if

FXt1 ,Xt2 ,...,Xtk
(xt1 , xt2 , . . . , xtk) = FXt1 ,Xt2 ,...,Xtk

(xt1 , xt2 , . . . , xtk)

In other words, the joint distribution only depends on the difference h and not on the
time (t1, . . . , tk).

Definition 2 (Weak Stationarity): The time series {Xt : t ∈ T} is said to be weakly
stationary if

(i) E[Xt] = C with some constant C

(ii) Cov(Xt, Xt+h) does not depend on t.

Definition 3 (Almost Sure Convergence): Let Xn be a sequence of random variables and
let X be a random variable. Let (Ω, F, P) be a probability space where Xn and X are
defined. We say that the sequence Xn converges almost surely or with probability 1 if

P ( lim
n→∞

Xn = X) = 1 or equivalently P ({ω ∈ Ω | lim
n→∞

Xn(ω) = X(ω)}) = 1.

Essentially this means that we are almost guaranteed that the values of Xn approach (al-
most surely) the value of X in the sense that the events for which Xn does not converge
to X have probability zero. An example to illustrate this would be to suppose we are
throwing a dart at a unit square. We could divide this sqaure into two subregions by
drawing a vertical line down the middle. The probability of hitting either subregion is
just equal to the area of that subregion. The area of the line that divides the regions is
zero, so the probability that the dart lands on the line is zero. The possibility, however,
that the dart lands on the line does exist. In essence, as the number of throws of the dart
tends to infinity, the ratio of times that the line is hit tends to zero so the probability of
hitting one of the two regions is one.

Lemma 1: If |ρ| > 1 and E(|εi|) ≤ C then

∞∑
i=0

|ρ|i|εt−i|

converges almost surely.

Proof: Since
∑N

i=1 |ρ|i|εt−i| is monotone, then

lim
N→∞

N∑
i=1

|ρ|i|εt−i| → ξ almost surely
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where ξ can either be finite or ∞.

Next we show that

E(
N∑

i=1

|ρ|i|εt−i|) =
N∑

i=1

|ρ|iE(|εt−i|)

≤ C

N∑
i=1

|ρ|i

≤ C
∞∑
i=1

|ρ|i

=
C

1− |ρ|

and by Fatou’s Lemma

E(lim inf
N→∞

N∑
i=1

|ρ|i|εt−i|) ≤ lim inf
N→∞

E(
N∑

i=1

|ρ|i|εt−i|)

≤ C

1− |ρ|

We are able to finish the proof.

Lemma 2: if {Xt} is strictly stationary and E|X0|ν < ∞ for some ν > 0 then

ρNXt−N → 0 almost surely.

To show the proof of this we’ll need the to use the following lemma and inequality.

Borel-Cantelli Lemma: if for all ε > 0∑
n

P (|Xn −X| > ε) < ∞⇒ Xn → X almost surely

Markov’s Inequality: Given Y ≥ 0

P (Y ≥ x) ≤ E(Y )

x
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Proof of lemma 2:

P (|ρNXt−N | > ε) = P (|Xt−N | > ε|rho|−N)

= P (|Xt−N |ν > εν |ρ−Nν

= P (|X0|ν > εν |ρ|−Nν) by strict stationarity

≤ E(|X0|ν)
εν

|ρ|Nν by Markov’s Inequality

⇒
∞∑

N=1

P (|ρNXt−N | > ε) < ∞

⇒ |ρNXt−N | → 0 almost surely
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