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I first happened upon the subject of frames when investigating the subject of wavelets
in a signals processing text. We define a frame as a (redundant) set of vectors {φn}n∈I in a
Hilbert space H if there are numbers A, B ≥ 0 such that for all φ ∈ H,

A‖φ‖2 ≤
∑
n∈I

|〈φ, φn〉|2 ≤ B‖φ‖2.

Frames are important in signals processing because signals decomposed into coordinates,
transmitted and then reconstructed back onto the original frame are usually quite robust.
However, the subject also draws from some of the deeper and more interesting areas of
mathematics, which makes it worth examining in and of itself. The remainder of this report
will be a survey of results and topics studied throughout the summer.

The first introduction to the subject I considered was from Mallat’s[1] extremely user-
friendly introduction to the topic, presented from a signal processing point of view. His
chapter about frames discusses them in the context of trigonometric polynomials, and com-
pleting the exercises helped develop some intuition about the subject. Ole Christiansen’s[2]
book is another good reference on the topic, as his development is slow and rigorous, and
the exercises he includes are difficult and rewarding. Of the different tributaries that feed
into the study of frames, those covered under the umbrella of functional analysis came up
much more than anything else. For these, I found Serge Lang’s book on the subject to be
a good introduction, but by far the most relevant and useful I have encountered is Akhiezer
and Glazman’s Theory of Linear Operators in Hilbert Space[3]. The subject of frames is
treated almost universally in the context of Hilbert spaces, so it makes sense to limit the
study to these. Frames are often generated by and defined through operators, so this text
was particularly useful in that regard. Two specific operators are of general importance in
consideration of frames, the translation and modulation operators, are defined as follows:

Translation by a ∈ R, Ta: L2(R) → L2(R), (Taf)(x) = f(x− a),

and

Modulation by b ∈ R, Eb: L2(R) → L2(R), (Mbf)(x) = e2πibxf(x).

Alkhiezer’s book is also a good introduction to some important definitions and properties.
A subspace H1 ⊂ H is called an invariant subspace of a given operator T if every element
f ∈ DT , where DT ⊂ H1 is mapped by the operator T into an element also belonging to
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H1, i.e., f ∈ DT ∪ H1 ⇒ Tf ∈ H1. It is more or less a generalization of the concept of
eigenvalues and eigenmanifolds from linear algebra. Techniques of analyzing frames based
on these ideas are often quite fruitful, predominantly because one cleverly chooses a subspace
that is invariant for a particular operator. For Gabor frames, shift-invariant and modulation-
invariant subspaces are essential for reducing the complexity of a system owing to the fact
that any properties one discovers in these subspaces are true in general for the operators
and space in its entirety. We attempted to show that there are invariant subspaces for both
the Translation and Modulation operators by finding them directly, and investigated some
articles on the topic that were specific to Gabor frames.

In terms of the modulation and translation operators defined above, a Gabor frame is a
frame for L2(R)of the form EmbTna,(m,n)∈Z, where a, b > 0 and g ∈ L2(R) is a fixed function.
The function g is often referred to as the window function or generator, and these new
frames are often called Weyl-Heisenberg frames, because they can be characterized as a
representation of the Heisenberg matrix group.

A good example of why it is important to consider Gabor frames, as opposed to a
orthonormal basis, is the Balian-Low theorem. The Gabor orthonormal basis is defined
with the indicator function as EmTnχ[0,1](x)

m,n∈Z. If the indicator function is replaced
by a different function that is continuous and has more desirable decay properties, such
as a Gaussian, then this function cannot be well localized in both time and frequency.
That is, at least one of Fourier transforms of either must diverge. Formally, the theo-
rem states that if EmTng is a Riesz basis for L2(R), where m and n are integers, then
(
∫∞
−∞ |xg(x)|2dx)(

∫∞
−∞ |γg(γ)|2dx) = ∞.

Christiansen’s book offers the following conjecture: Given any finite collection of distinct
points (µk, λk)k∈I in R2 and a function g 6= 0, the Gabor system e2πiλkxg(x − muk)k∈I is
linearly independent. In light of the operators mentioned above, finite subsets of a regular
Gabor frame must be linearly independent.

I invested some time trying to understand this problem and why it is so difficult to solve.
My initial investigation was fairly rudimentary; Using matlab, I set up a few different window
functions, created a Gabor frame with 2 or 3 elements, and attempted to solve the equation
c1g1 + c2g2 + · · · + cngn = 0 numerically for Gabor functions gn(x) and for values of x ∈ R.
In the cases I considered, the functions were all likely linearly independent, because the
program couldn’t find any value that satisfied the relation. It turns out that, in the special
case where (µk, λn) = (na, mb)N,M

n=1,m=1, or the indexes of λ and µ are a lattice of integers,
the finite Gabor frame is linearly independent. The proof of this relies on the properties of
the operators themselves, and their relationship with Von-Neumann algebras. At this time
there is no simple, well-defined perturbation method to analyze the system when the indexes
are not integers, which is why the problem has been so difficult to for non-integer values.
Nevertheless, there is no counterexample, and most believe that the conjecture is indeed
true.

The final two topics included in my program of study this summer were Deguang Han and
David Larson’s article[4] which contains some interesting theorems on the subject of Gabor
frames and wandering vectors, and the Grassmannian frames, described in Strohmer et al.[5].
Given some conditions on the frame coefficients, it is possible that every wandering vector
in a given frame is complete. The subject also has some connections to algebras, which I
explored briefly. Grassmannian frames are those that minimize the maximum inner product
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between any two vectors in a given frame. These are highly desirable for signal processing
and communications, but very little is actually known about them. Most of the theorems
I investigated borrowed heavily from sphere packing and other areas of mathematics that
were developed independently of frame theory.

The subject of frame theory has some very rich and useful results, and merits further
investigation. Finally, I would like to offer my sincerest thanks to my mentor, Dr. Nathan
Smale, and the University of Utah Department of Mathematics , for providing me with this
extraordinary and fun opportunity.
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