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1 Introduction

How does one define risk? Risk is a very relative term which can mean something to
one person and something entirely different to someone else. Therefore, to analyze risk
mathematically one has to concretely define what is meant by ”Risk.” This paper will be
dealing with the risk associated with businesses and corporations from the perspective of
a bank or any potential lender. Now risk can take on a more concrete meaning. A lender
only sees risk in a company based on how likely it is that the lender will not receive the
return on their investment. Therefore if we look at a specific loan we can define risk as
the probability that that the lender will not receive a full return on that loan to some
company. This is event is equivalent to the company defaulting while the loan is still
outstanding. As recommended by the Basle committee, we can express risk in terms of
the probability of time till default such that the probability that company i will default
before time h given that they are currently at time t can be expressed as:

Pi[τ > h|not at default at time t] = exp[e(xT
i,tb)a(h; θ)],

where xT
i,t is the transpose of observed covariates, or the factors specific to company i

that influence its risk and a(h, θ) is a baseline hazard function. This function can be
thought of as accounting for the risk associated with even the perfect company. b and
θ are parameters. This model is called the Proportional Hazard Model. In this case we
could define a quantitative credit score, si,t, for company i at time t such that si,t = xT

i,tb̂,

where b̂ is the estimated value of the parameter b. Notice that this is all we would need
to define a credit score for company i at time t since only xT

i,t depends on the company i
and time t.

This is a basic model for understanding the risk of a specific company, but current
rating systems do no use continuous credit scores. Scores are often discretized so that
individuals that have a similar amount of risk can be group together.

2 Basic Framework

Let us examine a generic credit score with K total scores with possible values 1, 2, . . . , K,
where 1 indicates the minimum amount of risk and K is default. Now let us introduce
a variable Yi,t to denote the credit score of the individual i at time t and ~Yi,t to denote
the entire credit history up to and including time t. Notice that credit scores are not
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typically updated at a continuous rate. We are examining periods of some specified
length. Therefore we can assume that t only takes on integer values. ~Yi,t is also known
as the lagged credit history for company i . Therefore we can now characterize the risk
associated with a company i from t to t + 1 as:

P (Yi,t+1 = K | Yi,t 6= K)

We can also examine the scores of a whole industry or group of individuals. Let us
denote Yt as the vector (Y1,t, . . . , Yn,t) and ~Yt = (Y1, . . . ,Yt) as the lagged ratings for the
whole industry. Notice that each company has K possible scores and thus Yt can have
Kn different values if there are n different companies. In other words, the process Yt has
a state space with Kn elements.

3 Stochastic Migration Model

Let πt be K×K random matrices which form a Markov process. We also assume that for
every fixed t all elements of πt are between 0 and 1 and the sum of the elements in each row
must be 1. This means that each realization of πt is a transition matrix. If the sequence
π = (πt, 1 ≤ t < ∞) is known we use Pπ and Eπ to denote the corresponding probability
and expected value. This means that Pπ and Eπ are the conditional probability and
expected value given πt, 1 ≤ t < ∞. Let πt(j, k) denote the (j, k) element of πt.

Definition 3.1. The individual rating histories will satisfy a Stochastic Migration Model
if Y1,t, . . . , Yn,t are stochastic processes satisfying:
(i) Pπ(Yi,t = k|Yi,t−1 = j) = πt(j, k) for all 1 ≤ i ≤ n, 1 ≤ j, k ≤ K and 1 ≤ t < ∞
and
(ii) for all sets C1, . . . , Cn we have

Pπ({Y1,t, 1 ≤ t < ∞} ∈ C1, . . . , {Yn,t, 1 ≤ t < ∞} ∈ Cn)

= Pπ({Y1,t, 1 ≤ t < ∞} ∈ C1) · · ·Pπ({Yn,t, 1 ≤ t < ∞} ∈ Cn).

Sets C1, . . . , Cn are vectors of infinite length whose elements take on values in 1, . . . , K.
Conditions (i) and (ii) mean that if the transition matrices are given then Yi,t, 1 ≤ i ≤ n
are independent identically distributed markov chains.

We should take note that the individuals are independent if the sequence πt, 1 ≤ t < ∞
is known and dependant otherwise. Let us denote the transition matrix for Yt as Πt. If
we know the whole lagged history and the whole sequence πt for all t then Y1,t, . . . , Yn,t

independant and identically distributed markov chains. Therefore we can easily develop
Πt for any t. The transition matrix for Yt will be characterized by:

P (Yt+1 = k | ~Yt, π) = Pπ(Yt+1 = k | ~Yt)

= Pπ(Y1,t+1 = k1, . . . , Yn,t+1 = kn | ~Yt)

= Pπ(Y1,t+1 = k1 | ~Yt) · · ·Pπ(Yn,t+1 = kn | ~Yt),
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where the last equality holds because of (ii). Here k = (k1, . . . , kn) where k1, . . . , kn are
taking values in 1, . . . , K. Πt can be written as:

Πt =

[πt(1, 1)]n . . . [πt(1, n)]n

...
. . .

...
[πt(n, 1)]n . . . [πt(n, n)]n


Thus with appropriately ordered states Πt can factored as:

Πt =

[πt(1, 1)]n−1πt . . . [πt(1, n)]n−1πt
...

. . .
...

[πt(n, 1)]n−1πt . . . [πt(n, n)]n−1πt



=

[πt(1, 1)]n−1 . . . [πt(1, n)]n−1

...
. . .

...
[πt(n, 1)]n−1 . . . [πt(n, n)]n−1

⊗ πt

= · · · = πt ⊗ · · · ⊗ πt

= ⊗nπt,

⊗ denotes the Kronecker product and ⊗n denotes the n-fold Kronecker product. The
h–step probabilities for Yt can be expressed in terms of the h–step transtion matrices of
Y1,t, . . . , Yn,t.

Pπ(Yt+h = k | ~Yt)

= Pπ(Y1,t+h = k1, . . . , Yn,t+h = kn | ~Yt)

= Pπ(Y1,t+h = k1 | ~Yt) . . . P (Yn,t+h = kn | ~Yt).

Therefore Πh
t can be expressed as:

Πh
t = ⊗nπh

t ,

where Πh
t is the h–step transtion matrix from t to t+h for Yt and πh

t is the h-step transition
matrix from t to t+h for Yi,t, i = 1, . . . , n. Both the single and h-step transition matrices
are derived using the independence and known transition probabilities of the Yi,t chains.

Now suppose the sequence πt is unknown for all t. Now πt is a Markov process
and Y1,t, . . . , Yn,t are dependent processes. Assembling Πt becomes more complicated at
this point. Now we must know something about the underlying distribution driving the
matrices πt. If we know something about the underlying distribution of πt then we can
integrate them out of our probabilities for Yt by taking conditional expected values. Let
us start by proving a lemma that will be used throughout the rest of this paper.
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Lemma 3.1. Suppose that A is an event dependent upon a vector B and a matrix C.
Then E[A | B] = E(E[A | B,C] | B).

Proof. Here we will offer a proof for when A,B,C take on discrete values. Let us start
by simplifying E[A | B,C].

E[A | B,C] =
∑
A

A · P (A = A | B,C).

Now E(E[A | B,C] | B) can be written as:

E(E[A | B,C] | B) = E[
∑
A

A · P (A = A | B,C) | B]

=
∑
C

∑
A

A · P (A = A | B,C)P (C = C | B)

=
∑
C

∑
A

A · P (A = A,B = B,C = C)

P (B = B,C = C)

P (C = C,B = B)

P (B = B)

=
∑
C

∑
A

A · P (A = A,B = B,C = C)

P (B = B)

=
∑
A

A

P (B = B)

∑
C

P (A = A,B = B,C = C)

=
∑
A

A

P (B = B)
P (A = A,B = B)

=
∑
A

A · P (A = A | B = B)

= E[A | B]

Now using Lemma 3.1, Πt will be characterized by:

P (Yt+1 = k | ~Yt)

=E[P (Yt+1 = k | ~Yt, π) | ~Yt]

=E[Pπ(Yt+1 = k | ~Yt) | ~Yt]

=E[Pπ(Y1,t+1 = k1 | ~Yt) . . . Pπ(Yn,t+1 = kn | ~Yt) | ~Yt].(3.1)

We can also derive Πh
t using Lemma 3.1

P (Yt+h = k | ~Yt)

=E[P (Yt+h = k | ~Yt, π) | ~Yt]

=E[Pπ(Yt+h = k | ~Yt) | ~Yt]

=E[Pπ(Y1,t+h = k1 | ~Yt) . . . Pπ(Yn,t+h = kn | ~Yt) | ~Yt]
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We cannot develop the distribution of Yt much further without more information about
the underlying distribution driving the sequence πt, but we can see that the resulting
transition matrix for Yt would still be symmetric with regards to the i indices of the
Yi,t chains that make up Yt. Therefore it is now clear that under a stochastic migration
model the distribution of Yt is symmetric with respect to the the i indices, in other words,
changing which company is i and which company is j has no effect on the distribution of
Yt.

3.1 Population Behavior

Yt has a state space of Kn elements which makes Πt a rather large matrix. However,
since we assumed identical distributions for Y1,t, . . . , Yn,t then the distribution of Yt is in-
dependant of which company takes which index. Therefore, when examining the behavior
of a whole population it may be interesting to ignore which individual takes which value
and only to examine how may indviduals take on each value. Indeed, we can see that
when two individuals are in the same state at time t − 1 then their next steps to time t
will have identical distributions, that is:

P (Yi,t = k1, Yj,t = k2 | Yi,t−1 = k0, Yj,t−1 = k0)

= P (Yi,t = k2, Yj,t = k1 | Yi,t−1 = k0, Yj,t−1 = k0)

Therefore, we shall analyze how many total individuals take on a specific value. Let us
introduce Y∗

t that is a vector of length K where:

Y∗
t =



n∑
i=1

IYi,t=1

n∑
i=1

IYi,t=2

...

n∑
i=1

IYi,t=K


.

Here IX is an indicator function equalling 1 if the event X holds and zero otherwise. Now
Y∗

t has a state space of
(

n+K−1
n

)
elements which is significantly less than the state space

of Yt (Kn elements) and therefore maybe more useful for describing the behavior of a
whole industry.

Theorem 3.1. Assume Y1,t, . . . , Yn,t satisfy a stochastic migration model, then the number
of elements in the state space of Y∗

t will be strictly less than the number of elements in
the state space of Yt when the population size n is strictly greater than 1 and the number
of possible credit scores K is strictly greater than 1.
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Proof. Here an inductive proof with respect to n or K can be used. Here is the proof
with respect to K. First let us prove

(
n+K−1

n

)
< Kn when K = 2 and n ≥ 2.(
n + 1

n

)
< 2n

if and only if n + 1 < 2n,

which holds for n ≥ 2. Now let us assume
(

n+K−1
n

)
< Kn is true. Now we will show that

this implies
(

n+K
n

)
< (K + 1)n, where we have now replaced K with K + 1. Let us start

by simplifing
(

n+K
n

)
. (

n + K

n

)
=

(n + K)!

n!K!

=
n + K

K

(n + K − 1)!

n!(K − 1)!

<
n + K

K
Kn = nKn−1 + Kn.(3.2)

Now we can simplify (K + 1)n using the binomial theorem:

(K + 1)n =
n∑

i=0

(
n

i

)
Kn−i

= Kn + nKn−1 +
n∑

i=2

(
n

i

)
Kn−i.(3.3)

Now combining 3.2 and 3.3 we have:

nKn−1 + Kn < Kn + nKn−1 +
n∑

i=2

(
n

i

)
Kn−i

if and only if 0 <
n∑

i=2

(
n

i

)
Kn−i,

where the last inequality holds for n ≥ 2. Therefore the inductive argument holds.

If we denote π∗t as the transtion matrix for Y∗
t and the set

Ωk∗ := {k : Yt = k ⇒ Y∗
t = k∗} then the entries of π∗t will be characterized by:

P (Y∗
t+1 = k∗ | ~Yt)

=
∑

k∈Ωk∗

P (Yt+1 = k | ~Yt).

Now using equation 3.1 we have:

P (Y∗
t+1 = k∗ | ~Yt)

=
∑

k∈Ωk∗

E[Pπ(Y1,t+1 = k1 | ~Yt) . . . Pπ(Yn,t+1 = kn | ~Yt) | ~Yt],

where k = (k1, . . . , kn) and k1, . . . , kn take values in 1, . . . , K.
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3.2 Transition Estimation for Large Populations

Let us now examine the case where the number of individuals included in Yt is tending
to infinity. With such a large number of individuals, any unbiased estimators for our
transition probabilities will converge in probability to the theoretical values. That is,
if we define Nk;t to be the number of individuals in state k at time t, Nk,l;t to be the
number of individuals stepping from k to l from time t to time t + 1, and n to be the
total number of individuals in the population then

Nk,l;t

Nk;t
is an unbiased estimator for

P (Yi,t+1 = l | Yi,t = k). Therefore we have:

Nk,l;t

Nk;t

→ P (Yi,t+1 = l | Yi,t = k),

in probability as n →∞. Thus we can now see that for large populations πt is observable
for any passed t.

4 Correlation

Now that the stochastic migration model has been defined we can compute the correlation
of some specified movement between two companies. Notice that correlation is only
relevant in the case where the sequence of πt for future t is assumed to be unknown,
otherwise the companies will be independent and therefore uncorrelated. Let us start by
first defining the correlation between the movement of a company i from state k to k∗

and a company j moving from state l to l∗, denoted as ρt(k, k∗; l, l∗):

ρt(k, k∗; l, l∗) =
cov(IYi,t+1=k∗ , IYj,t+1=l∗ | ~Yt, Yi,t = k, Yj,t = l)

V ar(IYi,t+1=k∗ | ~Yt, Yi,t = k, Yj,t = l)1/2V ar(IYj,t+1=l∗ | ~Yt, Yi,t = k, Yj,t = l)1/2
.

Notice that the indices of the companies do not matter therefore the above equation
depends only on the current credit score of the two companies not which company is i
and j. Also note that the correlation is conditioned upon ~Yt, Yi,t = k, Yj,t = l in order to
emphasize the present state of the companies but also to acknowledge their dependence
on the whole lagged history of the population. Let us start by simplifying the value of
the covariance in the numerator.

cov(IYi,t+1=k∗ , IYj,t+1=l∗ | ~Yt, Yi,t = k, Yj,t = l)

=E[IYi,t+1=k∗ , IYj,t+1=l∗ | ~Yt, Yi,t = k, Yj,t = l]

−E[IYi,t+1=k∗ | ~Yt, Yi,t = k, Yj,t = l]E[IYj,t+1=l∗ | ~Yt, Yi,t = k, Yj,t = l].

Now using Lemma 3.1:

cov(IYi,t+1=k∗ , IYj,t+1=l∗ | ~Yt, Yi,t = k, Yj,t = l)

=E[πt(k, k∗)πt(l, l
∗) | ~Yt]− E[πt(k, k∗) | ~Yt]E[πt(l, l

∗) | ~Yt].(4.4)
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Now the denominator can be simplified in a similar fashion.

V ar(IYi,t+1=k∗ | ~Yt, Yi,t = k, Yj,t = l)

=E[IYi,t+1=k∗ | ~Yt, Yi,t = k, Yj,t = l]− E[IYi,t+1=k∗ | ~Yt, Yi,t = k, Yj,t = l]2

=E[IYi,t+1=k∗ | ~Yt, Yi,t = k, Yj,t = l](1− E[IYi,t+1=k∗ | ~Yt, Yi,t = k, Yj,t = l]).

Again, using Lemma 3.1:

V ar(IYi,t+1=k∗ | ~Yt, Yi,t = k, Yj,t = l)

=E[πt(k, k∗) | ~Yt](1− E[πt(k, k∗) | ~Yt).(4.5)

Now, combining equations 4.4 and 4.5 we have:

ρt(k, k∗; l, l∗) =
E[πt(k, k∗)πt(l, l

∗) | ~Yt]− E[πt(k, k∗) | ~Yt]E[πt(l, l
∗) | ~Yt]√

E[πt(k, k∗) | ~Yt](1− E[πt(k, k∗) | ~Yt)

√
E[πt(l, l∗) | ~Yt](1− E[πt(l, l∗) | ~Yt)

One correlation that is of particular interest is that of two companies with the same credit
rating moving simultaneously into default, also called default correlation. Therefore, if
two companies are in a state l where l 6= K then their default correlation is defined as
ρt(l,K; l,K).
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