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ABSTRACT. The injectivity of the restriction homomorphism on divisor
class groups to hypersurfaces has been studied by Grothendieck, Danilov,
Lipman, and Griffith & Weston, among others. In particular, when A is a
Noetherian normal domain of equicharacteristic zero and A/fA satisfies R1,
Spiroff established a map Cl(A) → Cl((A/fA)′), where (A/fA)′ represents
the integral closure of A/fA, and gave some conditions for injectivity. In this
paper, the authors continue in the same vein, but in the case of characteristic
p > 0. In addition, when the hypersurface A/fA is normal, they provide
further enlightenment about the kernel of Cl(A) → Cl(A/fA). Finally, using
the second author’s previous results, they exhibit a new class of examples for
which the kernel is non-trivial.
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1 Introduction

In the second author’s article [23], the following questions are considered:
If (A,m) is a local normal domain, f1, f2, . . . is a sequence of elements in
A such that limn→∞fn = 0, and each A/fnA satisfies the Serre regularity
condition R1, must it be the case that no non-trivial divisor class can lie in
all of the kernels of Cl(A) → Cl(A′

n), where A′

n denotes the integral closure of
An := A/fnA ? That is, must every non-trivial divisor class have non-trivial
image under at least one of the maps Cl(A) → Cl(A′

n) ? Secondly, if the
answer is “yes”, are there good conditions so that the intersection:
⋂

∞

n=1 Ker(Cl(A) → Cl(A′

n)), becomes zero at some predictable finite stage?

The first question was inspired by an article of C. Miller [19], in which a
similar problem concerning power series rings A[[T ]] was considered. In [23,
Thm. 3.1], Spiroff obtains a general affirmative answer to the first question.
In addition, a partial positive answer to the second question is obtained
as well. In particular, Spiroff shows that for a local isolated singularity of
dimension greater than or equal to four and of equal characteristic zero, an
affirmative answer to the second question can be established, provided the
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ring in question possesses a non-trivial small Cohen-Macaulay module [23,
Thm. 4.1]. The argument relies on a blend of ideas taken from standard
commutative algebra, Hochschild cohomology, and lifting properties of small
Cohen-Macaulay modules in the style of Yoshino [25, §6] and Popescu [20,
§1].

The basic philosophy being espoused here is that the deeper f lies in powers
of the maximal ideal, the better the injective behavior of the group homomor-
phism Cl(A) → Cl((A/fA)′). Put another way, the behavior of the divisor
class group on any collection of hypersurfaces, as described above, should
reflect most elementary properties of the divisor class group of A (e.g., finite
generation, torsion, etc.)

In Section 2, we provide some basic facts concerning divisor classes and the
maps between divisor class groups. In Section 3, we consider graded k-
algebras, where k is a perfect field of characteristic p > 0. We study the
restriction homomorphism Cl(S) → Cl((S/fS)′), where S0 = k, S is a normal
domain, and f is a homogeneous element, in a sufficiently high power of the
irrelevant maximal ideal of S, such that S/fS satisfies R1. In addition, we
require dim S to be greater than or equal to four and Spec(S)−m to be locally
regular, where m = S+. In case S = S0[S1], note that our requirements may
be expressed by stating that V = Proj(S) is smooth over k with dimension
greater than or equal to three. Within this context, the hypersurface W
defined by f = 0 must be smooth in codimension less than or equal to
one. The induced homomorphism S(V ) → S(W )′ provides an equivalent
way of computing the kernel of j*: Cl(V ) → Cl(W ), where j : W → V
represents inclusion. That is, Ker(j*) is naturally equivalent to the kernel of
the homomorphism Cl(S(V )) → Cl(S(W )′). [See §3 for further discussion.]

It is well-known that the graded rings S described above, because they are
isolated singularities, have small Cohen-Macaulay modules (see M. Hochster
[15, Cor. 5.12] for a discussion of this fact). We use this fact to establish that
the kernel of Cl(S) → Cl((S/fS)′) is at worst a bounded p-group. Our proof
makes use of properties encountered through lifting small Cohen-Macaulay
modules as developed by Yoshino [25, §6] and Popescu [20, §1] in the context
of Cohen-Macaulay rings. In an appendix, Section 6, we supply the slightly
more general version (of their work) that we need.

Section 4 considers the case where all the hypersurfaces A/fA under con-
sideration are normal, rather than simply R1. We show that when [a] is a
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non-trivial element in the kernel of Cl(A) → Cl(A/fA), then f · Ext1
A(a,−)

is not identically zero. Using this fact, we establish the main result of this
section: that, independent of characteristic, if A is an isolated singularity of
dimension greater than three that possesses a small Cohen-Macaulay module
M and f lies in a sufficiently high power of m, then Cl(A) → Cl(A/fA) is
injective. We conclude the section by providing a connection of these results,
in the case of characteristic p > 0, with those of Section 3.

Finally, in Section 5, we combine Spiroff’s theorem [23, Thm 3.1] with re-
sults of Danilov [7, § 5] in order to demonstrate that the homomorphism
Cl(A) → Cl((A/fA)′) may have non-trivial kernels when f is not required
to lie sufficiently deep inside of the maximal ideal. This should come as no
surprise in view of Danilov’s results in [6], [7], and [8] for the restriction ho-
momorphism Cl(A[[T ]]) → Cl(A). However, in Theorem 5.1, our ambient
ring represents an isolated singularity of dimension greater than or equal to
three. This requirement means that our ambient ring can not be of the form
A[[T ]]. Nor can it be a complete intersection when its dimension exceeds
three since the presence of a non-zero divisor class would be in violation of
Grothendieck’s results [13, Ch. XI], that such a ring is a unique factorization
domain. Thus, our example for which the kernel of the restriction of divisor
classes is non-trivial is exclusive of the two most quoted types of examples.

2 Preliminaries

All rings are assumed to be Noetherian. For most of our deliberations, the
notion of divisor class group of a normal domain A will follow the account
described by J. Lipman [17, §0] and recounted in later articles [12, §1] and
[23, §2]. By definition, the divisor class group of A, denoted by Cl(A), is the
group of isomorphism classes of reflexive ideals of A. (Equivalently, consider
the rank one reflexive A-modules.) To be specific, the class of an ideal a
has the property [a] = [a**], where (−)* = HomA(−, A). So each ideal class
contains a unique reflexive representative, up to isomorphism. Multiplication
is defined by [a] · [b] = [(a⊗ b)**]. The class of any principal ideal represents
the identity class.

Let f = 0 be an irreducible hypersurface in Spec A such that A/fA is
regular in codimension less than or equal to one (i.e., A/fA satisfies the
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Serre regularity condition R1). Denote by (−)′ the integral closure of A/fA.
We collect a few observations about calculations in Cl(A) and Cl((A/fA)′)
that will facilitate our arguments in sections 3, 4, and 5.

(2.1) [a] = [A] if and only if a ∼= I, where the ideal I contains a regular
2-sequence of A.

(2.2) There is a homomorphism of divisor class groups Cl(A) → Cl((A/fA)′).
This homomorphism takes the class of the reflexive ideal a to [(a/fa)**]
∈ Cl((A/fA)′), where duals here are taken with respect to (A/fA)′.

(2.3) If the divisor class of a reflexive ideal a ⊂ A is in the kernel of the
homomorphism Cl(A) → Cl((A/fA)′), then HomA(a, N) ∼= N for any
finitely-generated reflexive (A/fA)′-module N . More specifically, with
B = (A/fA)′:

HomA(a, N) ∼= HomB((a⊗A B)∗∗, N) ∼= N,

where the first isomorphism involves methods found in [2, §4], and the
second uses the fact that [a] is in the kernel of Cl(A) → Cl((A/fA)′).
(See [23, Thm. 4.1].) Included in the above statement is the case
N = (A/fA)′. The converse of the statement is true as well.

(2.4) If M is a finitely-generated maximal Cohen-Macaulay A-module (here-
after referred to as a small Cohen-Macaulay module), then the
A/fA-module M = M/fM is also an (A/fA)′-module. Therefore, if
[a] ∈ Ker(Cl(A) → Cl((A/fA)′)), then HomA(a,M) ∼= M.

(2.5) There are a few occasions that we will want to appeal to the Bourbaki
description of divisor class group [3, Ch. 7] from the additive point of
view–the notion of attached divisor classes. It has two advantages, the
first of which is that an attached divisor class is defined for any finitely-
generated module M . More specifically, there is a free submodule F of
M such that M/F is torsion. The divisor attached to M is χ(M/F ),
where:

χ(M/F ) = Σhtp=1l(M/F )p · p.
Define [M ] to be [χ(M/F )]. The second advantage is that classes of
attached divisors are additive on short exact sequences. To be specific,
if 0 → N →M → L→ 0 is a short exact sequence of finitely-generated
modules, then [M ] = [N ] + [L]. For a fractional ideal a, the attached
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divisor of a is the same as the class of a in the multiplicative sense. As
long as there is no confusion in a given context, we will simply denote
a class by [M ], or [a], when using either structure.

In Section 4, we work in the context of N-graded rings S over a field k.
(Our fields will be required to be perfect.) This simply means that S is a
finitely-generated graded k-algebra, S = S0 ⊕ S1 ⊕ S2 ⊕ . . . , with S0 = k,
and where m = S+ denotes the graded maximal ideal. When S is a normal
domain, there is a natural isomorphism Cl(S) → Cl(Sm), by [22, Prop. 6];
so Cl(S) ↪→ Cl(Ŝ), where Ŝ is the completion of Sm at the graded maximal
ideal. For any prime element f ∈ S such that S/fS satisfies R1, there is a
commutative diagram:

Cl(S) �

�

//

��

Cl(Ŝ)

��

Cl((S/fS)′) �

�

// Cl((\S/fS)′)

Therefore, the kernel of the homomorphism Cl(S) → Cl((S/fS)′) lies in the

kernel of Cl(Ŝ) → Cl((\S/fS)′), and questions concerning injectivity of the
first map can be transferred to the second. Thus, we can complete S.

By Cohen Structure Theory, there is a regular local ring R such that R ↪→ S
is a module-finite extension. Let Λ = S ⊗R S be the enveloping algebra,
µ : Λ → S the multiplication map, J the kernel of µ, and η = AnnΛJ. Then
the Noetherian different of S with respect to R is µ(η) and is denoted
by NS/R. A convenient reference for this material is M. Auslander and D.
Buchsbaum [1]. The ideal of Noetherian differents NS, composed of all theNS/R, defines the singular locus of S; i.e., p contains NS if and only if Sp is
not regular. (See [25, (4.2)] for more details on the matter.)

For unexplained terminology in commutative algebra, we suggest Matsumura’s
book [18] as a reference, and likewise for references to algebraic geometry, we
suggest Hartshorne’s book [14].
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3 Characteristic p > 0

Let k be a perfect field of positive characteristic p and let S denote anN-graded ring of dimension greater than or equal to four such that S is
normal and S0 = k. In addition, we assume that Spec(S) − m is regular,
where m = S+ is the graded maximal ideal. In the geometric setting where
S = S0[S1], we can achieve the regularity condition by requiring V = Proj(S)
to be smooth over k.

Next, let f be a homogeneous prime element in m such that the factor ring
S/fS is regular in codimension less than or equal to one. We concern our-
selves with the injective behavior of the induced homomorphism “restriction”
of divisor class groups Cl(S) → Cl((S/fS)′). See §2 for more details of this
construction.

Following the lead in [23, Thm. 4.1], we wish to show the restriction ho-
momorphism is injective, or nearly injective, when f is suitably “deep” inm. In particular, we study the situation where x1, x2, . . . , xd is a system of
parameters for S that is contained in the ideal of Noetherian differents NŜ,

where Ŝ is the m-adic completion of S. (See §2.) Our basic requirement on
f is that it lie in the parameter ideal (x2

1, x
2
2, . . . , x

2
d). In Theorem 3.5, we

argue that Ker(Cl(S) → Cl((S/fS)′) is at worst a bounded p-group, in this
case. Although our line of argument in the proofs of Theorem 3.5 follows a
similar pattern as the second author’s article [23, §4] for the case of equichar-
acteristic zero, the ingredients that go into the proof of [23, Thm. 4.1] need
to be refined and made suitable for application in positive characteristic. We
highlight a few of the necessary changes in the lemmas and observations that
precede the proof of Theorem 3.5.

Remark 3.1. The graded ring S has a nonzero small Cohen-Macaulay mod-
ule M . In our setting of characteristic p > 0, this fact was first noticed by
Hartshorne-Peskine-Szpiro [21] in dimension three. An account is given by
Hochster [15, Cor. 5.12] that covers the case at hand.

Lemma 3.2. Let S be as above and let M be a small Cohen-Macaulay mod-
ule. Then there is a system of parameters, x1, x2, . . . , xd, that depends only
on Ŝ, such that (x1, x2, . . . , xd)Ext1

Ŝ
(M̂,−) ≡ 0.

Proof. The argument given in [23, Claims 4.3 & 4.4] applies to Ŝ here
as well. Namely, the ideal NŜ is m̂-primary and has the property that
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NŜExt1
Ŝ
(M̂,−) ≡ 0. Therefore, we may take a graded system of parame-

ters x1, x2, . . . , xd in NŜ such that (x1, x2, . . . , xd)Ext1
Ŝ
(M̂,−) ≡ 0.

Notation 3.3. For a system of parameters x1, . . . , xd, set x(2) = (x2
1, . . . , x

2
d).

Remark 3.4. ([25, Rem. 6.19], [20, §1]) Let the graded system of parameters
x1, x2, . . . , xd in S be as in (3.2). If f is a homogeneous prime element in x(2)

and if M = M/fM is a small Cohen-Macaulay module over S/fS, then it
has a unique lifting to S should it have any lifting at all. Since the Yoshino
and Popescu arguments assume the ring is also Cohen-Macaulay, we provide
a brief exposition of this result in Section 6 (Appendix).

Theorem 3.5. Let k be a perfect field of positive characteristic p and let
S denote an N-graded ring of dimension greater than or equal to four such
that S0 = k and S is a normal domain. We assume that Spec(S) − m is
regular, where m = S+. Let x1, . . . , xd be a system of parameters contained
in S ∩NŜ and suppose that f is a homogeneous prime element in x(2) such
that S/fS satisfies R1. Then the kernel K of Cl(S) → Cl((S/fS)′) is at
worst a bounded p-group. Moreover, if gcd(rank M , p) = 1, where M is
the small Cohen-Macaulay module of (3.1), then Cl(S) → Cl((S/fS)′) is
injective.

Proof. As discussed in §2, we can complete S. Thus, assume S is complete,
and construct the ideal NS. Choose a system of parameters x1, x2, . . . , xd inNS and let f ∈ x(2) be a prime element such that S/fS satisfies R1. Set
B = (S/fS)′. Suppose a is a reflexive ideal of S whose divisor class lies in
the kernel of Cl(S) → Cl(B). Then [(a ⊗S B)*] = [B], where the dual is
taken with respect to B.

Let M be a graded small Cohen-Macaulay S-module, as per (3.1). Then we

have the short exact sequence 0 →M
·f
→ M → M → 0. The same argument

used in [23, proof of Thm. 4.1] (which requires that dim S ≥ 4) shows the
exactness of:

(†) 0 // HomS(a,M)
·f

// HomS(a,M) // HomS(a,M) // 0.

Moreover, HomS(a,M) ∼= M , as per (2.4). Thus, by (†), HomS(a,M) is
a lifting of M . But then (3.4) implies that HomS(a,M) ∼= M . Let r =
rank(M). As observed in [23, proof of Thm. 4.1], and also in [19, Lemma
6.3]:
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[HomS(a,M)] = −r[a] + [M ].

Thus, r[a] = 0 in Cl(S), using the additive notation of (2.5). Now by [12,
Thm. 1.2], K contains no elements of order prime to p. Thus, |[a]| is some
power of p, which means that r = pel, where e ≥ 1 and gcd(p, l) = 1. Hence,
K is a bounded p-group. Moreover, if gcd(r, p) = 1, then Cl(S) → Cl(B) is
injective.

Remark 3.6. Note that the above proof gives us a description of the kernel.
To be specific, we have shown that:

K ⊂ {[a] ∈ Cl(S)| HomS(a,M) ∼= M for any small Cohen-Macaulay M }.

We end this section with some remarks about the geometric interpretation
of our result. Here we assume that S = S0[S1], S0 = k, and Proj(S) = V is
smooth over k. Then the homogeneous element f defines a hypersurface H
in V which is smooth in codimension less than or equal to one. Within this
framework there is a commutative diagram in which the column homomor-
phisms amount to restriction. (See Hartshorne [14, § II.6] and Samuel [22,
p. 159].)

0 // Z // Cl(V ) //

��

Cl(S) //

��

0

0 // Z // Cl(H) // Cl((S/fS)′) // 0

It follows that there is a natural identification between the kernels of the
maps Cl(V ) → Cl(H) and Cl(S) → Cl((S/fS)′). Thus, the results on the
divisor class groups of Theorem 3.5 apply to Cl(V ) → Cl(H) as well.

4 Normal Hypersurfaces

In this section, rather than requiring our hypersurfaces to only satisfy R1,
as in Section 3, we consider the case where the hypersurfaces are all normal.
Consequently, we obtain more information about the kernels of the restriction
maps than in (3.5). Moreover, our results are independent of characteristic.
However, we will provide a connection between these new results and those
of the previous section. Our main observation is the following:
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Proposition 4.1. Suppose that A and A/fA are normal local domains and
that [a] is a non-trivial element in the kernel of Cl(A) → Cl(A/fA). Then
f ·Ext1A(a,−) is not identically zero.

Proof. Form a short exact sequence 0 → K → F → a → 0, where F is
A-free. Suppose f ·Ext1

A(a, K) = 0. For the homomorphisms ·f and F → a
there is a pullback diagram:

0

��

0

��
0 // K // K ⊕ a //

��

a //

·f

��

0

0 // K // F

��

// a
��

// 0a
��

a
��

0 0

(Note that the top row is split exact since it is obtained by multiplying the
bottom row by f .)

Dualizing the middle column with respect to A gives:

F* ↪→ K*⊕a* → Ext1
A(a, A) → 0.

Note that Ext1
A(a, A) ∼= HomA(a, A) ∼= A. Hence pdA(K*⊕a*) ≤ 1, which

implies that pdAa* ≤ 1. In other words, a* has an FFR. Thus, a* ∼= A, [3,
p. 533]; hence, a ∼= A. Contradiction.

As we stated in the introduction, this result will be instrumental in obtaining
further information about the injectivity of the maps Cl(A) → Cl(A/fA).
However, before arriving at any important conclusions or connections to the
previous sections, we need some preliminary observations.

Lemma 4.2. Let (A,m) be a local domain of dimension greater than or equal
to two and let M be a torsion-free finitely-generated A-module that is locally
free on Spec(A) −m. Then there is a system of parameters x1, . . . , xd for A
such that Mxi

is Axi
-free for i = 1, . . . , d.
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Proof. Let the ideal I be generated by all y 6= 0 such that My is Ay-free. If
I is not m-primary, then choose p ∈ Spec(A) − m containing I. Since M is
locally free on the punctured spectrum of A, Mp is a free Ap-module. Choose
a maximal linearly independent set L in M such that F = ⊕λ∈LAλ has the
property Fp = Mp. Then 0 → F → M → W → 0, where W is torsion, and
Fp ∼= Mp. Choose x ∈ ann(W ) − p. Then Fx

∼= Mx, which contradicts the
fact that x /∈ I. Thus, mN ⊂ I, for some N > 0. If y1, . . . , yd is a system of
parameters, then set xi = yN

i .

Remark 4.3. There is a graded version of this result, where “local” can be
replaced by graded.

Corollary 4.4. Let A and M be as above. Then there is a system of param-
eters x1, . . . , xd and short exact sequences 0 → M → F → Ti → 0 where F
is A-free and xi · Ti = 0.

Proof. According to (4.2), choose a system of parameters y1, . . . , yd such that
Myi

is Ayi
-free. Set y = yi and write My

∼= ⊕r
j=1Ayej = G. There is a short

exact sequence 0 → M → My → W → 0, where W is y-torsion. Any
generator ml of M can be expressed as Σr

j=1αljej , for some αlj ∈ Ay. Let t
be the maximum power of all the denominators of the coefficients αlj, for all
l and j. Set e′j =

ej

yt . Then ml = Σr
j=1αlj · y

t · e′j ⊂ ⊕r
j=1Ae

′

j . In other words,

M is a subset of a free A-module of rank r. Call this free module F . F/M is
y-torsion since F/M ⊂ G/M . Moreover, each generator of F is sent into M
by some finite power of y. Let s (i.e., si) be the maximum of these powers.
Set xi = ysi

i , 1 ≤ i ≤ d.

Corollary 4.5. With the same notation as above, xi·Ext1A(M,−) ≡ 0, for
all i.

Proof. From the short exact sequences of the previous corollary, we obtain
exact sequences 0 = Ext1

A(F,−) → Ext1
A(M,−) → Ext2

A(Ti,−) → 0, where
xi·Ext2

A(Ti,−) = 0.

Corollary 4.6. With the same notation as above, if a is an ideal such that
HomA(a,M) ∼= M , then x(2)Ext1A(a*, -) ≡ 0. (See §3 for notation.)

Proof. Set x = xi and 0 → M → F → T → 0, as in (4.4). Consider the
diagram below:
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0 // M // HomA(a, F ) //

%% %%KKKKKKKKKKK
HomA(a, T )

T ′
+

�

99sssssssssss

The short exact sequence 0 → M → HomA(a, F ) → T ′ → 0 induces a long
exact sequence of functors:

Ext1
A(T ′,−) // Ext1

A(HomA(a, F ),−) // Ext1
A(M,−)

Observe that HomA(a, F ) ∼= ⊕r
j=1a*. Since xi·T

′

i = 0 and xi·Ext1
A(M,−) = 0,

we conclude that x2
i ·Ext1

A(⊕r
j=1a*, -) = 0. This holds for all i.

We are now in a position to establish the important conclusion of this section
and to apply it to the results from Section 3. Using the above facts, we have
the following:

Proposition 4.7. Let (A,m) be a normal, local domain of dimension greater
than or equal to four such that Spec(A) − m is regular, and let f1, f2, . . . be
a sequence of prime elments such that:

(i) fn → 0 in the m-adic topology, and

(ii) each hypersurface A/fnA =: An is normal.

In addition, suppose A has a small Cohen-Macaulay module M . Then there
exists an N > 0 such that for all n ≥ N , Cl(A) → Cl(An) is injective.

Proof. Because M is locally free on Spec(A)−m, we can choose a system of
parameters x1, . . . , xd as in (4.2). Let N > 0 be such that fn ∈ x(2) for all
n ≥ N . If [a] ∈ Ker(Cl(A) → Cl(An)), for n ≥ N , then (3.6) implies that
HomA(a,M) ∼= M . By (4.6), for all i, x2

i · Ext1
A(a*, −) ≡ 0. But by (4.1),

fn· Ext1
A(a∗,−) is NOT identically zero. Therefore, [a*], and hence [a], must

be trivial, since fn ∈ x(2).

Next, Theorem 3.5 can be improved in case the family of hypersurfaces is
normal. Note that the case of equicharacteristic zero is handled in [23].

Theorem 4.8. Let k be a perfect field of characteristic p > 0. Let S be anN-graded ring of dimension greater than or equal to four such that S0 = k
and S is a normal domain. We assume that Spec(S) − m is regular, wherem = S+. If f1, f2, . . . is a sequence of homogeneous prime elements such
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that fn → 0 in the m-adic topology and each hypersurface Sn is normal, then
there is an integer N > 0 such that Cl(S) → Cl(Sn) is injective for n ≥ N .

Proof. The proof proceeds in a familiar manner. First complete S. Secondly,
recall that, by (3.1), there is a small Cohen-Macaulay S-module M . Choose
a homogeneous system of parameters x1, . . . , xd that satisfies both (4.2) and
(3.2). (Note that powers of the xi’s chosen for (4.2) can always be taken so
that the s.o.p. satisfies (3.2) as well.) There is an N > 0 such that fn ∈ x(2)

for n ≥ N . If [a] ∈ Ker(Cl(S) → Cl(Sn)), then as in (3.6), HomS(a,M) ∼= M .
But then [a] must be trivial, since fn ∈ x(2).

5 Examples Where Ker(Cl(A) → Cl((A/fA)′))

is Non-Trivial

Most referenced examples for which the kernel of the restriction of divisor
classes, Cl(A) → Cl(A/fA), is non-trivial come about in two ways. Either
A is a complete intersection of dimension less than or equal to three, or
A = B[[T ]], as in Danilov’s theory [6, §1] and [7, §5]. To be specific, we are
not aware of any examples for which dim A ≥ 4 and A is a local isolated
singularity. In part, this is because the (low dimensional) examples usually
start with A being a hypersurface or complete intersection. If A is a com-
plete intersection, as well as an isolated singularity, with dim A ≥ 4, then
Grothendieck’s results [13, Ch. XI] apply, and it follows that A is already
a UFD; hence, the injectivity of Cl(A) → Cl(A/fA) is a moot point. To
remedy this situation, we appeal to a combination of the Danilov results [6,
§1] and [7, §5] together with those of Spiroff [23, Thm. 3.1].

We begin by letting (A,m) be any excellent local normal domain which is an
isolated singularity and contains a sequence of prime elements {πn}

∞

n=1, such
that πn → 0 in the m-adic topology and each A/πnA is an isolated singularity.
In addition, suppose that the group homomorphism Cl(A[[T ]]) → Cl(A) is
not injective. This last hypothesis is not difficult to achieve, for when A
contains a field k of characteristic zero and dim A ≥ 3, it amounts to requiring
that A not satisfy the Serre condition S3. (See [8, Thm. 2].) That is, we
require H1(X,OX) 6= 0, where X = Spec(A) −m
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Recall from [23] that one has Cl(A) → Cl((A/πnA)′) in this case. Moreover,
the existence of πn in A satisfying the requirements above can be obtained
in many cases as a result of Bertini’s Theorem [10, p. 10]. However, one
can make a standard generic construction as we do below within Example
5.2. Finally, we note that the hypotheses on A above do not impose any
restriction on the the dimension of A, beyond requiring that it be at least
three.

Theorem 5.1. Let (A,m, k), for k an algebraically closed field, be an ex-
cellent local normal domain which is an isolated singularity and contains
a sequence of prime elements {πn}

∞

n=1, such that πn → 0 in the m-adic
topology and each A/πnA is an isolated singularity. In addition, suppose
that Cl(A[[T ]]) → Cl(A) is not injective. Let Bn = A[[T ]]/(T n − πn), for
n = 1, 2, 3, . . . . Then,

(i) for n not a multiple of the characteristic of k, the ring Bn is a normal
local domain that is an isolated singularity,

(ii) there is a natural isomorphism (Bn/tBn)′ ∼= (A/πnA)′, where t is the
image of T in Bn, and

(iii) the group homomorphism Cl(Bn) → Cl((Bn/tBn)′) is not injective
for at least one n > 0.

Proof. (i) Since Bn is the t-adic completion of A[T ]/(T n−πn), it is enough to
consider the polynomial version. More specifically, we will show that when
A[T ]/(T n − πn) is localized at a prime P that contracts to p ∈ Spec(A) −
{m}, then the result is a regular ring. Consequently, by excellence, the
completed ring Bn is a local normal ring that is an isolated singularity. Letp ∈ Spec(A) − {m}.
Consider the case πn ∈ P. Then πn ∈ p. Note that Ap/πnAp is a regular local
ring and A[T ]P/(T n − πn)A[T ]P is a localization of Ap[T ]/(T n − πn)Ap[T ].
From the short exact sequence:

0 → Ap[T ]/(T n − πn)Ap[T ]
·t
→ Ap[T ]/(T n − πn)Ap[T ] → Ap/πnAp → 0,

one obtains that Ap[T ]/(T n − πn)Ap[T ] is a regular ring. Consequently, the
ring A[T ]P/(T n − πn)A[T ]P is regular.

Next, suppose πn /∈ P. For n such that p - n, πn is a unit in Ap and T n − πn

is a separable polynomial in κ(p)[T ]. Equivalently, [9, p. 114], T n − πn is
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separable over Ap; that is, the extension Ap → Ap[T ]/(T n−πn)Ap[T ] is étale.
As a result, Ap[T ]/(T n − πn)Ap[T ] is a regular ring. Therefore, as above, the
ring A[T ]P/(T n − πn)A[T ]P is regular.

(ii) Observe that Bn/tBn
∼= A[[T ]]/(T n − πn, T ) ∼= A/πnA.

(iii) For each n, there exists a commutative diagram of ring homomorphisms:

Bn

mod t

##GG
GG

GG
GG

G

A[[T ]]

mod T n−πn

<<xxxxxxxx

mod T
##GG

GG
GG

GG
G

A/πnA
�

�

// (A/πnA)′ ∼= (Bn/tBn)′

A

mod πn

;;vvvvvvvvv

As a result, there is a commutative diagram on divisor class groups:

Cl(Bn)

''OOOOOOOOOOO

Cl(A[[T ]])

88qqqqqqqqqq

&&MMMMMMMMMM
Cl((Bn/tBn)′)

Cl(A)

77ooooooooooo

Let [a] be a non-trivial element of the kernel of Cl(A[[T ]]) → Cl(A). Then
[a] /∈ ⋂

Ker(Cl(A[[T ]]) → Cl(Bn)), by [23, Thm. 3.1]. Thus, for at least one
n ≥ 1, the image of [a] in Cl(Bn) is non-trivial. By commutativity of the
diagram, for any n, this image is in the kernel of Cl(Bn) → Cl((Bn/tBn)′).

Example 5.2 Let S be the graded ring over C that is the Segre productC [X0 , X1, X2]/(X
l
0 +X l

1 +X l
2)×Segre C [Y0 , Y1], where l is any integer greater

than two. Then dim S = 3 and S is not Cohen-Macaulay due to a theorem
of Chow. (See [5, p.818] and especially [16, §14]). By repeating the Segre
product with rings of the form C [Y0 , Y1], one elevates the dimension by one
each time. However, the depth will remain at two as a result of repeated use
of the Künneth Formula for computing scheme cohomology, [16, Prop. 5.1,
§14] and [24, Cor. 1.1]. With this process, we can construct dim S to be as
large as we like, where S is now the ring obtained after any certain number
of iterations.

14



The localization of S at its irrelevant graded maximal ideal provides a local
normal isolated singularity of depth exactly two. We refer to this ring as
A. Let a1, . . . , ad be a system of parameters and consider the elements πn =
Σd

i=1a
n
i Xi ∈ A[X1, . . . , Xd]m[X]. It is routine to argue that A[X]m[X] and

A[X]m[X]/(πn) are isolated singularities. (For details, see [23, Ex. 4.3].)
Further, πn → 0 in the maximal ideal topology on A[X]m[X]. We now apply
Theorem 5.1.

6 Appendix

Unique Lifting of Small Cohen-Macaulay Modules

The discussion here follows that of Yoshino [25, pp. 48-49] and Popescu [20,
Thm. 1.2], and is tailored for our needs in the proof of Theorem 3.5. We
keep our remarks brief since for the most part we are simply observing that
the Cohen-Macaulay hypothesis on the ring can be dropped. For a system
of parameters x1, x2, . . . , xd, we are using the notation x = (x1, . . . , xd) and
x(2) = (x2

1, x
2
2, . . . , x

2
d).

Theorem 6.1. (Popescu-Yoshino) Let (A,m) be a local ring and suppose
the system of parameters x1, . . . , xd has the property that xExt1A(M,−) ≡ 0,
wheneverM is a small Cohen-Macaulay A-module. IfM and N are two small
Cohen-Macaulay A-modules, then for any homomorphism φ : M/x(2)M →
N/x(2)N , there is a homomorphism φ : M → N such that φ ≡ φ (mod x).

Proof. Since M and N are small Cohen-Macaulay modules, we note that
both x and x(2) are regular sequences on M and N . Following the notation
of Yoshino [25, p. 48], we let yi = (x2

1, . . . , x
2
i ) and zi = (x2

1, . . . , x
2
i , xi+1).

The commutative diagram:

0 // N/yiN
·x2

i+1
//

·xi+1

��

N/yiN // N/yi+1N //

��

0

0 // N/yiN
·xi+1

// N/yiN // N/ziN // 0

and the functor HomA(M,−) yield the commutative diagram:
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HomA(M,N/yiN) // HomA(M,N/yi+1N) //

��

Ext1
A(M,N/yiN)

·xi+1

��

HomA(M,N/yiN) // HomA(M,N/ziN) // Ext1
A(M,N/yiN).

Since the multiplication map ·xi+1 in the far right column represents the
zero map, one gets that, for any φi+1 ∈ HomA(M,N/yi+1N), there is φi ∈
HomA(M,N/yiN) such that φi agrees with φi+1 modulo zi. Since for all
i, HomA(M,N/yiN) = HomA(M/yiM,N/yiN), the claim follows by in-
duction, by successively lifting from φi+1 : M/yi+1M → N/yi+1N to φi :
M/yiM → N/yiN .

Remark 6.2. The above result holds when “local” is replaced by “graded”;
that is, when all rings and modules are graded, A = A0⊕A1⊕A2⊕ . . . , with
A0 a field, and the maximal ideal m is the irrelevant one, namely A+.

Corollary 6.3. Notation is the same as in (6.1). If f ∈ x(2), then a homo-
morphism ψ : M/fM → N/fN “lifts” to a homomorphism φ : M → N such
that φ and ψ agree modulo x.

Proof. Note that ψ induces a homomorphism φ : M/x(2)M → N/x(2)N .
From (6.1), φ is induced by a homomorphism φ : M → N , where φ ≡ φ
(mod x). Since ψ and φ agree modulo x(2), it follows that ψ and φ agree

modulo x.

Corollary 6.4. Notation is the same as in (6.1). If there is a prime element
f ∈ x(2) such that M/fM ∼= N/fN , then M ∼= N ; i.e., lifting small Cohen-
Macaulay modules modulo f is unique (when it occurs).

Proof. From (6.3), an isomorphism ψ : M/fM → N/fN lifts to a homo-
morphism φ : M → N such that ψ ≡ φ (mod x). More specifically, for
any n ∈ N , there exists an m ∈ M such that φ(m) + xN = n + xN ; i.e.,
N = φ(M) + xN . Thus, by Nakayama’s Lemma, φ is surjective. Since
the sequence x1, . . . , xd is N -regular, applying ⊗AA/x to the short exact
sequence:

0 // Ker(φ) // M
φ

// N // 0,

we obtain another short exact sequence:

0 // Ker(φ) ⊗A A/x // M ⊗A A/x
φ⊗A/x

// N ⊗A A/x // 0.
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Since ψ ≡ φ (mod x) and ψ is an isomorphism, Ker(φ) ⊗ A/x = 0. Thus,
by Nakayama’s Lemma, Ker(φ) = 0.

Once again, we remark that (6.4) holds in the graded setting of (6.2). One
may develop much more. Consult [25, §6] and [20, §1].
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