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Weak and strong solvability of parabolic variational
inequalities in Banach spaces

Matthew Rudd∗

Abstract. We consider parabolic variational inequalities having the strong formulation

{〈u′(t), v − u(t)〉 + 〈Au(t), v − u(t)〉 + �(v) − �(u(t) ≥ 0,

∀v ∈ V ∗∗, a.e. t ≥ 0,
(1)

where u(0) = u0 for some admissible initial datum, V is a separable Banach space with separable dual
V ∗, A : V ∗∗ → V ∗ is an appropriate monotone operator, and � : V ∗∗ → R ∪ {∞} is a convex, weak* lower
semicontinuous functional. Well-posedness of (1) follows from an explicit construction of the related semigroup
{S(t) : t ≥ 0}. Illustrative applications to free boundary problems and to parabolic problems in Orlicz-Sobolev
spaces are given.

1. Introduction

This paper examines constrained evolution problems which can be formulated as
parabolic variational inequalities on Banach spaces. Our work relies on a version of the
Crandall-Liggett exponential formula, developed in Section 3, which allows an explicit
construction of the related semigroup. To motivate the framework described in Section 2,
we begin with two examples.

Let � denote a bounded open set in R
N with smooth boundary ∂�, and consider the

problem of minimizing

Fp : W
1,p

0 (�) → R, Fp(v) :=
∫

�

|∇v|p dx,

over a closed convex set K ⊂ W
1,p

0 (�), where 1 < p < ∞. This functional is strictly
convex, weakly lower semicontinuous and coercive and therefore has a unique minimizer
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u ∈ K . In fact, u may be characterized as the solution of

〈Au, v − u〉 ≥ 0, ∀ v ∈ K, (2)

where A : W
1,p

0 (�) → W−1,q(�) is the Fréchet derivative of Fp,

〈Au, v〉 :=
∫

�

|∇u|p−2∇u · ∇v dx, ∀ v ∈ W
1,p

0 (�).

The elliptic variational inequality (2) may be rewritten in the form

〈Au, v − u〉 + �(v) − �(u) ≥ 0, ∀ v ∈ W
1,p

0 (�) (3)

by introducing the indicator functional

� : W
1,p

0 (�) → R ∪ {∞}, �(v) :=
{

0, for v ∈ K,

∞, for v ∈ K.

The parabolic version of (3) is to determine u : [0, T ] → W
1,p

0 (�) which satisfies

〈u′(t), v − u(t)〉 + 〈Au(t), v − u(t)〉 + �(v) − �(u(t)) ≥ 0 (4)

for all v ∈ W
1,p

0 (�) and almost every t ∈ (0, T ), such that u(0) = u0 for some admissible
initial value u0. The pairing involving u′(t) will make sense if u′(t) ∈ W−1,q(�) for
a.e. t . Moreover, if p ≥ 2N

N+2 , then

W
1,p

0 (�) ↪→ L2(�) ↪→ W−1,q(�),

and it follows that u ∈ C(0, T ; L2(�)) if u ∈ Lp(0, T ; W
1,p

0 (�)) and u′ ∈ Lq(0, T ;
W−1,q(�)) ([18]). Under such assumptions, it is reasonable to prescribe u0 ∈ L2(�);
we elaborate on the class of admissible initial data below.

Many choices are possible for the constraint functional � in (4). For example,
if p = 2 and � is the indicator functional of the closed convex set

K := {v ∈ H 1
0 (�) : v ≥ 0 on ∂�},

then (4) models the filtration of liquid through an earthen dam ([11]). If K consists of
functions which are nonnegative on ∂�, we obtain a model of fluid flow in a domain with a
semipermeable boundary ([2], [6]). We are interested in more general values of p (among
other things), and we focus on mathematical issues rather than physical interpretations.
Finally, note that � could be the trivial functional, in which case (4) is an equation.

As our second example, consider the minimization of

FM : W 1
0 LM(�) → R ∪ {∞}, FM(v) :=

∫
�

M(|∇v|) dx,
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where M is a Young function and W 1
0 LM(�) is the corresponding Orlicz-Sobolev space

([1], [10], [12]). This function space is neither separable nor reflexive in general. If the
conjugate M of M satisfies a �2 condition, however, then W 1

0 LM(�) is the double dual
of the separable space W 1

0 EM(�), whose dual is also separable ([1], [10]). A concrete
example of such a Young function is

M(t) = exp(tp) − 1, for p > 1, (5)

and problems in function spaces of this sort motivate the somewhat unusual structural
framework described in Section 2.

In contrast to Fp, FM is not finite on all of its domain. From the variational point of
view, though, FM is still wonderful, as it is convex, coercive and lower semicontinuous
with respect to the weak* topology of W 1

0 LM(�) ([13]). FM therefore has minimizers u

which satisfy

0 ∈ ∂FM(u),

where ∂FM denotes the subdifferential of FM . We may then consider the evolution problem

−u′(t) ∈ ∂FM(u(t)), for t > 0, (6)

which is equivalent to finding u : [0, T ] → W 1
0 LM(�) such that

〈u′(t), v − u(t)〉 + FM(v) − FM(u(t)) ≥ 0 (7)

for all v ∈ W 1
0 LM(�) and a.e. t > 0. An initial condition u(0) = u0 is also prescribed.

The parabolic variational inequalities (4) and (7) are special cases of (13) below. Section 2
clarifies the types of solutions we consider as well as the proper class of admissible initial
data. Section 3 defines the associated resolvent Jλ and establishes the exponential formula
which defines the map S(t) for t ≥ 0. This formula suggests that {S(t) : t ≥ 0} should
be a semigroup and that S(t)u0 should be the unique solution, in some sense, of the corre-
sponding parabolic variational inequality with initial condition u0. We address these issues
in Section 4, where we show that S(t)u0 is the unique strong solution if u0 is sufficiently
smooth and is the unique weak solution otherwise. The semigroup property follows from
unique solvability, and we conclude with some applications in Section 5.

2. Preliminaries

We refer to, e.g., [7], [14], [16] and [18] for definitions of terms used here. Let V

be a separable Banach space whose dual V ∗ is separable, and let 〈·, ·〉 denote the duality
pairing between V ∗ and V ∗∗. Let H be a Hilbert space which embeds continuously into V ∗;
identifying H with its dual yields

V ∗∗ ↪→ H ↪→ V ∗.
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Let A : V ∗∗ → V ∗ be a bounded hemicontinuous operator which satisfies

〈Au − Av, u − v〉 ≥ ω‖u − v‖2
H
, ∀ u, v ∈ V ∗∗, (8)

for some nonnegative monotonicity constant ω ≥ 0, let � : V ∗∗ → R ∪ {∞} be a convex,
proper and weak* lower semicontinuous functional, and assume that A and � satisfy the
coercivity condition

lim‖v‖
V ∗∗ →∞

〈Av, v − v0〉 + �(v)

‖v − v0‖V ∗∗
= ∞, (9)

for some v0 ∈ D(�), the effective domain of �. Finally, for each u ∈ D(�), suppose that
there exists a sequence {un} ⊆ D(�) such that

un → u in H, Aun ∈ H, and ∂�(un) ∩ H = ∅. (10)

For convenience, we therefore define the set

D := {v ∈ D(�) : Av ∈ H and ∂�(v) ∩ H = ∅}; (11)

note that D(�)
‖·‖

H = D
‖·‖

H . We have the following basic existence result, a detailed
proof of which is given in [16] (available upon request).

THEOREM 2.1. For each f ∈ V ∗, there exists u ∈ V ∗∗ such that

〈Au, v − u〉 + �(v) − �(u) ≥ 0, ∀ v ∈ V ∗∗. (12)

If A is strictly monotone, then the solution of (12) is unique.

For a prescribed initial condition u0 ∈ D(�)
‖·‖

H and a given final time T > 0,
we consider the following two types of solutions.

DEFINITION 2.2. A function u : [0, T ] −→ V ∗∗ is a strong solution of the parabolic
variational inequality associated to A and � with initial value u0 if

(i) u ∈ L∞(0, T ; V ∗∗) ∩ C0,1(0, T ; H),
(ii) u(0) = u0, and

(iii) u satisfies

〈u′(t), v − u(t)〉 + 〈Au(t), v − u(t)〉 + �(v) − �(u(t)) ≥ 0,

for all v ∈ V ∗∗ and a.e. t ∈ (0, T ). (13)

Strong solutions are Lipschitz continuous maps into H and are thus differentiable almost
everywhere. We will find that strong solutions exist for initial data in D. For arbitrary initial

data in D(�)
‖·‖

H , we will need
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DEFINITION 2.3. A function u : [0, T ] → V ∗∗ is a weak solution of the parabolic
variational inequality associated to A and � with initial value u0 if

(i) u ∈ C(0, T ; H),
(ii) u(0) = u0, and

(iii) There exists a sequence un of strong solutions of the parabolic variational inequality
associated to A and � with initial values un,0 such that un,0 → u0 in H and un → u

in C(0, T ; H).

3. The exponential formula

Consider the strong formulation (13) with a fixed t > 0, and let λ > 0 be a time step such
that λ < t . To approximate (13), replace the time derivative u′(t) with the usual difference
quotient and consider the elliptic inequality〈

u(t) − u(t − λ)

λ
, v − u(t)

〉
+ 〈Au(t), v − u(t)〉 + �(v) − �(u(t)) ≥ 0,

which must hold for all v ∈ V ∗∗ and in which u(t − λ) is a known element of H . For a
given x ∈ H , we therefore seek a solution u ∈ V ∗∗ of〈

u − x

λ
, v − u

〉
+ 〈Au, v − u〉, +�(v) − �(u) ≥ 0, ∀ v ∈ V ∗∗. (14)

PROPOSITION 3.1. For each x ∈ H , (14) has a unique solution u ∈ D(�), and the
resulting solution operator Jλ : H → D(�) is Lipschitz with respect to the norm of H ,

‖Jλx − Jλy‖
H

≤ 1

1 + λω
‖x − y‖

H
, for x, y ∈ H. (15)

Proof. Direct calculations show that the operator Ax,λ : V ∗∗ → V ∗, defined by
Ax,λu := 1

λ
(u−x)+Au, satisfies the hypotheses of Theorem 2.1 and is strictly monotone.

The Lipschitz continuity of Jλ follows from standard techniques ([11], [16]). �

The solution operator Jλ defined by Proposition 3.1 is the resolvent map associated
to (13). The following lemma records the other basic properties of the resolvent; part (iii)
is the resolvent identity.

LEMMA 3.2. Let λ > 0 and x ∈ H .

(i) If x ∈ D, then ‖Jλx − x‖
H

≤ λ
1+λω

(‖Ax‖
H

+ infy∈∂�(x)∩H ‖y‖
H
).

(ii) If n is a positive integer, then ‖J n
λ x − x‖

H
≤ n ‖Jλx − x‖

H
.

(iii) For any µ such that λ ≥ µ > 0, Jλx = Jµ(
λ−µ

λ
Jλx + µ

λ
x).
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Proof. By definition of the resolvent, Jλx satisfies

〈
Jλx − x

λ
, v − Jλx

〉
+ 〈AJλx, v − Jλx〉 + �(v) − �(Jλx) ≥ 0,

for all v ∈ V ∗∗. Substitute v = x into this inequality, then use the definition of D and the
monotonicity of A to obtain

1

λ
‖Jλx − x‖2

H
≤ 〈AJλx, x − Jλx〉 + �(x) − �(Jλx)

≤ 〈AJλx − Ax, x − Jλx〉 + 〈Ax, x − Jλx〉 + 〈y, x − Jλx〉
≤ −ω‖Jλx − x‖2

H
+ (‖Ax‖H + ‖y‖

H
)‖x − Jλx‖

H
,

where y is any element of ∂�(x) ∩ H . Estimate (i) follows.
Using the Lipschitz continuity of the resolvent, we have

‖J n
λ x − x‖

H
=

∥∥∥∥∥∥
n−1∑
j=0

(J
n−j
λ x − J

n−j−1
λ x)

∥∥∥∥∥∥
H

≤
n−1∑
j=0

(
1

1 + λω

)n−j−1

‖Jλx − x‖
H

,

and (ii) follows since 1
1+λω

≤ 1.

To verify (iii), define y := λ−µ
λ

Jλx + µ
λ
x. By definition, Jµy satisfies

〈
Jµy − y

µ
, v − Jµy

〉
+ 〈AJµy, v − Jµy〉 + �(v) − �(Jµy) ≥ 0, ∀ v ∈ V ∗∗.

For any v ∈ V ∗∗, we now calculate:

〈
Jλx − y

µ
, v − Jλx

〉
+ 〈AJλx, v − Jλx〉 + �(v) − �(Jλx)

= 1

µ

〈
Jλx − λ − µ

λ
Jλx − µ

λ
x, v − Jλx

〉
+ 〈AJλx, v − Jλx〉 + �(v) − �(Jλx)

=
〈

Jλx − x

λ
, v − Jλx

〉
+ 〈AJλx, v − Jλx〉 + �(v) − �(Jλx) ≥ 0,

by definition of Jλx. Consequently, Jλx solves the variational inequality which defines Jµy;
by uniqueness, it follows that Jλx = Jµy. �
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Lemma 3.3 is a slight modification of a result in [4], and Lemma 3.4 comes directly
from [4].

LEMMA 3.3. Let n ≥ m > 0 be integers, and let λ ≥ µ > 0. For x ∈ H ,

‖Jn
µx − Jm

λ x‖
H

≤ (1 + µω)−n
m−1∑
j=0

(
n

j

)
αjβn−j‖Jm−j

λ x − x‖
H

+
n∑

j=m

(1 + µω)−j

(
j − 1
m − 1

)
αmβj−m‖J n−j

µ x − x‖
H
,

where α = µ

λ
and β = λ−µ

λ
.

LEMMA 3.4. Let n ≥ m > 0 be integers, and let α and β be positive numbers such
that α + β = 1. Then

m∑
j=0

(
n

j

)
αjβn−j (m − j) ≤

√
(nα − m)2 + nαβ, and

n∑
j=m

(
j − 1
m − 1

)
αmβj−m (n − j) ≤

√
mβ

α2
+

(
mβ

α
+ m − n

)2

.

We can now establish the main results of this section, including the exponential
formula (16).

THEOREM 3.5. Let x and y be elements of D. For t ≥ 0, the limit

S̃(t)x := lim
n→∞ J n

t/n x (16)

exists, relative to the strong topology of H , and the map S̃ : [0, ∞) × D → H has the
following properties:

(i) S̃(·)x is Lipschitz continuous:

‖S̃(t)x − S̃(τ )x‖
H

≤ 2C|t − τ |,
where C = C(x) = ‖Ax‖

H
+ infy∈∂�(x)∩H ‖y‖

H
.

(ii) S̃(t) is a contraction:

‖S̃(t)x − S̃(t)y‖
H

≤ e−ωt‖x − y‖
H
.
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Proof. Let λ ≥ µ > 0 and n ≥ m > 0. Combining the estimates from Lemma 3.3 and
Lemma 3.2 (ii), (iii), we obtain

‖J n
µx − Jm

λ x‖
H

≤ C


(1 + µω)−n λ

1 + λω

m∑
j=0

(
n

j

)
αjβn−j (m − j)

+ µ

1 + µω

n∑
j=m

(1 + µω)−j

(
j − 1
m − 1

)
αmβj−m(n − j)


 ,

where C := ‖Ax‖H + infy∈∂�(x)∩H ‖y‖H , α := µ
λ

, and β := λ − µ

λ
. As µ and λ are

positive, negative powers of (1 + µω) and (1 + λω) are bounded above by 1. Thus, we
obtain the simpler inequality

‖Jn
µx − Jm

λ x‖
H

≤ C


λ

m∑
j=0

(
n

j

)
αjβn−j (m − j)

+ µ

n∑
j=m

(
j − 1
m − 1

)
αmβj−m(n − j)


 .

It then follows from Lemma 3.4 that

‖J n
µx − Jm

λ x‖
H

≤ C

(
λ[(nα − m)2 + nαβ]1/2

+ µ

[
mβ

α2
+

(
mβ

α
+ m − n

)2
]1/2


 ,

and, after substituting the values of α and β, we see that the quantity in parentheses equals

[(nµ − mλ)2 + nµ (λ − µ)]1/2 + [mλ (λ − µ) + (mλ − nµ)2]1/2 . (17)

For a given t > 0, we now put λ = t
m

and µ = t
n

in (17) and obtain

‖J n
t/nx − Jm

t/mx‖
H

≤ 2Ct

[
1

m
− 1

n

]1/2

. (18)

Consequently, {J n
t/nx} is a Cauchy sequence in H , and we define

S̃(t)x := lim
n→∞ J n

t/nx.

Since (1 + ωt/n)−n is the Lipschitz constant for J n
t/n and

lim
n→∞

(
1 + ωt

n

)−n

= e−ωt ,
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S̃(t) has e−ωt as its Lipschitz constant, i.e.,

‖S̃(t)x − S̃(t)y‖
H

≤ e−ωt‖x − y‖
H
.

To see that S̃(·)x is Lipschitz continuous, let t > τ > 0, put λ = τ/n and µ = t/n

in (17) with m = n, and let n → ∞ to find that

‖S̃(t)x − S̃(τ )x‖
H

≤ 2C(t − τ).
�

The approximation hypothesis (10) allows the unique extension of S̃ to S : [0, ∞) ×
D(�)

‖·‖
H → H . The next result shows that S(·)x is continuous for each x ∈ D(�)

‖·‖
H

and that S(t) is a contraction for each t ≥ 0. However, S(·)x is not Lipschitz continuous

for an arbitrary x ∈ D(�)
‖·‖

H . This distinction between S̃ and S is the reason that we
obtain strong solutions for smooth initial data but only have weak solutions for arbitrary
initial data.

COROLLARY 3.6. The map S̃ : [0, ∞)×D → H constructed in Theorem 3.5 extends

uniquely to S : [0, ∞) × D(�)
‖·‖

H → H , which satisfies:

(i) For each x ∈ D(�)
‖·‖

H , S(·)x is continuous.

(ii) For x, y ∈ D(�)
‖·‖

H and t ≥ 0, S(t) is a contraction:

‖S(t)x − S(t)y‖
H

≤ e−ωt‖x − y‖
H
.

Proof. Let x, y ∈ D(�)
‖·‖

H be given, and let {xn} and {yn} be approximating sequences
from D for x and y, respectively, as in (10). As {xn} is a Cauchy sequence in H , it follows
that {S̃(t)xn} is a Cauchy sequence in H , since

‖S̃(t)xn − S̃(t)xm‖
H

≤ ‖xn − xm‖
H
.

We then define S(t)x by the strong H -limit

S(t)x := lim
n→∞ S̃(t)xn.

This extension is clearly unique.
Let ε > 0 be given. For t, τ ≥ 0, we have

‖S(t)x − S(τ)x‖
H

≤ ‖S(t)x − S̃(t)xn‖H
+ ‖S̃(t)xn − S̃(τ )xn‖H

+ ‖S̃(τ )xn − S(τ)x‖
H

≤ ‖S(t)x − S̃(t)xn‖H
+ C|t − τ |

+ ‖S̃(τ )xn − S(τ)x‖
H
,

where C = C(xn) is the Lipschitz constant of S̃(·)xn. The right-hand side will clearly be
less than ε for n sufficiently large and |t − τ | sufficiently small, verifying the continuity
of S(·)x. A similar estimate of ‖S(t)x −S(t)y‖

H
shows that S(t) is a contraction for t ≥ 0.

�
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4. Strong and weak solutions

To verify that S(t)u0 belongs to D(�), this section analyzes the properties of the approxi-
mations J n

t/nu0 and the difference quotients appearing in (14). Along the way, we obtain
the results needed to prove Theorem 4.5 and Corollary 4.6, which assert the existence
of a unique strong or weak solution, respectively, of the parabolic variational inequality
associated to A and �, depending on the smoothness of the initial datum u0. These results

imply that {S(t) : t ≥ 0} is a semigroup of nonlinear contractions on D(�)
‖·‖

H .

LEMMA 4.1. Let u0 ∈ D. The function u : [0, ∞) → H defined by u(t) := S(t)u0

is differentiable almost everywhere and satisfies u′ ∈ Lp(0, T ; H) for 1 ≤ p ≤ ∞ and
any T > 0.

Proof. Theorem 3.5 shows that u(t) is Lipschitz continuous in t . Combine this with the
results in Section 1.4 of [3]. �

As discussed in [3], it follows that, for almost every t > 0 and u0 ∈ D,

u(t) = u0 +
∫ t

0
u′(s) ds. (19)

LEMMA 4.2. Let u0 ∈ D, and define u(t) := S(t)u0. For almost every t > 0, the

sequence { Jn
t/nu0−Jn−1

t/n u0

t/n
} has a subsequence which converges weakly in H to u′(t).

Proof. Let t∗ be a point where u(t) is differentiable. For each n, partition the interval
[0, 2t∗] with the points ti := it∗/n, for i = 0, 1, . . . , 2n. Associate to this partition the
piecewise linear function

un(t) :=




J i−1
t∗/nu0 +

(
t−ti−1
t∗/n

)
(J i

t∗/nu0 − J i−1
t∗/nu0),

for ti−1 ≤ t ≤ ti , 0 ≤ i ≤ n − 1,

J n−1
t∗/nu0 +

(
t−tn−1
t∗/n

)
(J n

t∗/nu0 − J n−1
t∗/nu0),

for tn−1 ≤ t ≤ tn+1,

J i−1
t∗/nu0 +

(
t−ti−1
t∗/n

)
(J i

t∗/nu0 − J i−1
t∗/nu0),

for ti−1 ≤ t ≤ ti , n + 2 ≤ i ≤ 2n.

Note that, at the point t∗, we have

u′
n(t

∗) = J n
t∗/nu0 − J n−1

t∗/nu0

t∗/n
.

Applying (15) i − 1 times and putting λ = t∗/n in Lemma 3.2(i), we see that∥∥∥∥∥
J i

t∗/nu0 − J i−1
t∗/nu0

t∗/n

∥∥∥∥∥
H

≤ C (20)
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for any index i, where C := ‖Ax‖
H

+ infy∈∂�(x)∩H ‖y‖
H

. The sequence {u′
n(t)} is

therefore bounded for each t ∈ [0, 2t∗] and, after passing to a subsequence,

u′
n(t) ⇀ w(t)

as n → ∞, for some w(t) ∈ H . Note that

〈w(t), u′
n(t)〉 ≤ C‖w(t)‖

H
,

from which it follows after letting n → ∞ that ‖w(t)‖
H

≤ C for t ∈ [0, 2t∗]. Bochner’s
Theorem ([3]) shows that w(t) is integrable.

To show that the sequence {un} converges to u in C(0, 2t∗; H), we consider several
cases. First, suppose that t ∈ [ti−1, ti] for some i ≤ n−1, so that t < t∗ and (i −1)t∗/n ≤
t ≤ it∗/n. We have

‖un(t) − u(t)‖
H

≤
∥∥∥∥J n

t/nu0 −
{
J i−1

t∗/nu0 +
(

t − ti−1

t∗/n

)
(J i

t∗/nu0 − J i−1
t∗/nu0)

}∥∥∥∥
H

+ ‖u(t) − J n
t/nu0‖H

≤ ‖J n
t/nu0 − J i−1

t∗/nu0‖H
+ ‖J i

t∗/nu0 − J i−1
t∗/nu0‖H

+ ‖u(t) − J n
t/nu0‖H

,

and we can estimate each of the summands on the right as follows. Let µ = t/n, λ = t∗/n,
and m = i − 1 in (17) to obtain

‖J n
t/nu0 − J i−1

t∗/nu0‖H
≤

[(
t − (i − 1)

t∗

n

)2

+ t (t∗ − t)

n

]1/2

+
[
(i − 1)

t∗

n

(
t∗ − t

n

)
+

(
t − (i − 1)

t∗

n

)2
]1/2

.

For t < t∗, we have the elementary inequality t (t∗−t)
n

≤ (t∗)2

4n
, and, since (i−1)t∗

n
≤ t ≤

it∗
n

, (t − (i − 1) t∗
n
)2 ≤ ( t∗

n
)2. Also, (i − 1)t∗/n ≤ t . Thus,

‖J n
t/nu0 − J i−1

t∗/nu0‖H
≤ 2

√
(t∗)2

4n
+ (t∗)2

n2
≤ 2t∗√

n
.

For the remaining summands, Lemma 3.2 shows that

‖J i
t∗/nu0 − J i−1

t∗/nu0‖H
≤ Ct∗

n
≤ Ct∗√

n
,

where C is the constant in (20), and the proof of Theorem 3.5 shows that

‖u(t) − J n
t/nu0‖H

≤ 2Ct√
n

≤ 2Ct∗√
n

.
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Combining these bounds, we have

‖u(t) − un(t)‖H
≤ c√

n
, for t ∈ [ti−1, ti], i ≤ n − 1, (21)

where c is a constant depending on t∗ and u0.
This argument requires only minor changes if t ∈ [ti−1, ti] for some i ≥ n + 2, so

that t ≥ t∗. In this case, we must put λ = t/n, µ = t∗/n, m = n, and n = (i − 1) in (17),
which yields exactly the same estimate as above for the first summand. Since t∗ ≤ t ≤ 2t∗,

we have t (t−t∗)
n

≤ 2(t∗)2

n
, which changes the final bound on the first term slightly. As the

bounds on the other terms are unaffected, we obtain a bound of the form (21) with a different
constant c. For the remaining case, in which tn−1 ≤ t ≤ tn+1, we have

‖un(t) − u(t)‖
H

≤ ‖J n
t/nu0 − J n−1

t∗/nu0‖H
+ 2‖J n

t∗/nu0 − J n−1
t∗/nu0‖H

+ ‖u(t) − J n
t/nu0‖H

,

and arguments similar to those of the two previous cases provide bounds on each of the
three right-hand terms. We thus obtain the uniform bound

‖u(t) − un(t)‖H
≤ c√

n
, t ∈ [0, 2t∗],

for a constant c depending only on t∗ and u0, verifying convergence.
For each n, the identity

〈un(t), v〉 = 〈u0, v〉 +
∫ t

0
〈u′

n(s), v〉 ds (22)

holds for all v ∈ H . By construction, {u′
n} is a sequence of bounded, integrable func-

tions which converges weakly to the integrable function w. Consequently, by dominated
convergence, letting n → ∞ in (22) yields

〈u(t), v〉 = 〈u0, v〉 +
∫ t

0
〈w(s), v〉 ds. (23)

It then follows from (19) that u′
n(s) ⇀ u′(s) for almost every s ∈ (0, 2t∗). In particular,

this holds for s = t∗, which proves that

J n
t∗/nu0 − J n−1

t∗/nu0

t∗/n
⇀ u′(t∗). (24)

�

{J n
t/nu0} By definition of the resolvent, {J n

t/nu0} is a sequence in D(�). We show next
that this sequence is bounded in V ∗∗, obtaining
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LEMMA 4.3. Let u0 ∈ D and u(t) = S(t)u0. For each t > 0, the sequence {J n
t/nu0}

converges to u(t) in the weak* topology σ(V ∗∗, V ∗).

Proof. For each integer n, J n
t/nu0 is the unique solution of

〈
J n

t/nu0 − J n−1
t/n u0

t/n
, v − J n

t/nu0

〉
+ 〈AJn

t/nu0, v − J n
t/nu0〉

+ �(v) − �(Jn
t/nu0) ≥ 0, ∀ v ∈ V ∗∗,

which we rewrite as

〈AJn
t/nu0, J n

t/nu0 − v〉 + �(Jn
t/nu0) − �(v)

≤
〈

J n
t/nu0 − J n−1

t/n u0

t/n
, v − J n

t/nu0

〉
, ∀ v ∈ V ∗∗.

From the proof of Lemma 4.2 and the embedding of V ∗∗ into H , we have

〈AJn
t/nu0, J n

t/nu0 − v〉 + �(Jn
t/nu0) − �(v) ≤ c‖v − J n

t/nu0‖V ∗∗ , ∀ v ∈ V ∗∗,

for a constant c = c(u0). Coercivity forces {J n
t/nu0} to be bounded in V ∗∗, and weak*

precompactness follows from the Banach-Alaoglu Theorem.
Let ũ(t) ∈ V ∗∗ be the weak* limit of a convergent subsequence {J ni

t/ni
u0} of the

sequence {J n
t/nu0}. We have

〈u(t) − ũ(t), u(t) − J
ni

t/ni
u0〉 ≤ ‖u(t) − ũ(t)‖H ‖u(t) − J

ni

t/ni
u0‖H ,

from which it follows upon letting n → ∞ that

‖u(t) − ũ(t)‖2
H ≤ 0,

since u(t) is the strong limit in H of the original sequence. Consequently, ũ(t) = u(t). As
this holds for any convergent subsequence, the sequence {Jn

t/nu0} converges in the weak*
topology to u(t). �

Since D(�) is weak* closed, u(t) = S(t)u0 ∈ D(�) for u0 ∈ D. Furthermore, we

conclude from Lemma 4.3 that S(t)u0 belongs to D(�)
‖·‖

H for any u0 ∈ D(�)
‖·‖

H .

Thus, for t, τ > 0 and u0 ∈ D(�)
‖·‖

H , the expression S(t) (S(τ )u0) makes sense; we will
see in Corollary 4.7 that this expression equals S(t + τ)u0.

The next lemma yields the uniqueness of solutions. The special case s = 0 reflects the
fact that S(t) is a contraction, although we have not yet verified that solutions are given
by S(t)u0.
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LEMMA 4.4. Let u1 and u2 be weak solutions of the parabolic variational inequality

associated to A and � with the prescribed initial values u1,0 and u2,0 in D(�)
‖·‖

H ,
respectively. Then, for 0 ≤ s ≤ t ,

‖u1(t) − u2(t)‖H
≤ eω(s−t)‖u1(s) − u2(s)‖H

. (25)

Proof. Suppose first that u1 and u2 are strong solutions. For almost every τ ∈ (s, t),
the inequalities

〈u′
1(τ ), v − u1(τ )〉 + 〈Au1(τ ), v − u1(τ )〉 + �(v) − �(u1(τ )) ≥ 0,

〈u′
2(τ ), v − u2(τ )〉 + 〈Au2(τ ), v − u2(τ )〉 + �(v) − �(u2(τ )) ≥ 0

therefore hold for all v ∈ V ∗∗. Inserting v = u2 in the first inequality and v = u1 in the
second inequality and then adding yields

〈u′
2(τ ) − u′

1(τ ), u1(τ ) − u2(τ )〉 + 〈Au2(τ ) − Au1(τ ), u1(τ ) − u2(τ )〉 ≥ 0,

and the monotonicity of A immediately yields

1

2

d

dτ
‖u1(τ ) − u2(τ )‖2

H
+ ω‖u1(τ ) − u2(τ )‖2

H
≤ 0.

Multiplying through by 2e2ωτ , we have

d

dτ
(e2ωτ‖u1(τ ) − u2(τ )‖2

H
) ≤ 0,

which we integrate from s to t to obtain

e2ωt‖u1(t) − u2(t)‖2
H

− e2ωs‖u1(s) − u2(s)‖2
H

≤ 0.

It follows immediately that

‖u1(t) − u2(t)‖H
≤ eω(s−t)‖u1(s) − u2(s)‖H

.

For the general case in which u1 and u2 are weak solutions, let un
1 and un

2 be sequences
of strong solutions with initial values un

1,0 and un
2,0, respectively, such that

un
i,0 → ui,0 in H and un

i → ui in C(0, T ; H), i = 1, 2.

We have

‖u1(t) − u2(t)‖H
≤ ‖u1(t) − un

1(t)‖
H

+ ‖un
1(t) − un

2(t)‖
H

+ ‖un
2(t) − u2(t)‖H

≤ ‖u1 − un
1‖

C(0,T ;H)
+ eω(s−t)‖un

1(s) − un
2(s)‖

H

+ ‖un
2 − u2‖C(0,T ;H)

,

since (25) holds for un
1 and un

2. Letting n → ∞ finishes the proof. �
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THEOREM 4.5. Let u0 ∈ D. The function u(t) := S(t)u0 is the unique strong solution
of the parabolic variational inequality associated to A and � with the initial value u0.

Proof. Theorem 3.5 shows that u(t) ∈ C0,1(0, T ; H) for any T > 0, and uniqueness
follows from Lemma 4.4.

Let t > 0 be a point where u is differentiable, and let v be an arbitrary element of V ∗∗.
By definition, J n

t/nu0 satisfies〈
J n

t/nu0 − J n−1
t/n u0

t/n
, v − J n

t/nu0

〉
+ 〈AJn

t/nu0, v − J n
t/nu0〉

+ �(v) − �(Jn
t/nu0) ≥ 0, (26)

which we rewrite in the form

〈AJn
t/nu0, J n

t/nu0 − u(t)〉 ≤
〈

J n
t/nu0 − J n−1

t/n u0

t/n
, v − J n

t/nu0

〉

+ 〈AJn
t/nu0, v − u(t)〉 + �(v) − �(Jn

t/nu0).

As {J n
t/nu0} is bounded in V ∗∗, {AJn

t/nu0} is bounded in V ∗. We thus obtain

〈AJn
t/nu0, J n

t/nu0 − u(t)〉 ≤
〈

J n
t/nu0 − J n−1

t/n u0

t/n
, v − J n

t/nu0

〉

+ c ‖v − u(t)‖
V ∗∗ + �(v) − �(Jn

t/nu0), (27)

for some c > 0, and taking the upper limit of both sides of (27) yields

lim sup
n→∞

〈AJn
t/nu0, J n

t/nu0 − u(t)〉 ≤ 〈u′(t), v − u(t)〉
+c ‖v − u(t)‖

V ∗∗ + �(v) − �(u(t)),

by the previously established convergence results and the weak* lower semicontinuity
of �. We now let v = u(t) to obtain

lim sup
n→∞

〈AJn
t/nu0, J n

t/nu0 − u(t)〉 ≤ 0. (28)

Let v again represent an arbitrary element of V ∗∗. Since J n
t/nu0

∗
⇀ u(t) in V ∗∗, it

follows from (28) and the pseudomonotonicity of A that

〈Au(t), u(t) − v〉 ≤ lim inf
n→∞ 〈AJn

t/nu0, J n
t/nu0 − v〉. (29)

However, by (26), we have

〈AJn
t/nu0, J n

t/nu0 − v〉 ≤
〈

J n
t/nu0 − J n−1

t/n u0

t/n
, v − J n

t/nu0

〉
+ �(v) − �(Jn

t/nu0),
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from which we see that

lim sup
n→∞

〈AJn
t/nu0, J n

t/nu0 − v〉 ≤ 〈u′(t), v − u(t)〉 + �(v) − �(u(t)). (30)

Concatenating (29) and (30), we conclude that

〈u′(t), v − u(t)〉 + 〈Au(t), v − u(t)〉 + �(v) − �(u(t)) ≥ 0.

This holds for almost every t > 0 and for any v ∈ V ∗∗, verifying (13).
It remains to show that u ∈ L∞(0, T ; V ∗∗) for any T > 0. Suppose that this is

false. Then there exists a sequence of points {tk} in [0, T ] such that u is differentiable at
each tk and

lim
k→∞ ‖u(tk)‖V ∗∗ = ∞.

It then follows from the coercivity condition (9) that there exists an unbounded, increasing
sequence {Ck} of constants such that

〈Au(tk), u(tk) − v0〉 + �(u(tk)) ≥ Ck‖u(tk) − v0‖V ∗∗ .

As u(tk) satisfies (13), we have

〈u′(tk), v0 − u(tk)〉 + 〈Au(tk), v0 − u(tk)〉 + �(v0) − �(u(tk)) ≥ 0,

which, combined with the previous bound, yields

〈u′(tk), v0 − u(tk)〉 + �(v0) ≥ 〈Au(tk), u(tk) − v0〉
+ �(u(tk)) ≥ Ck‖u(tk) − v0‖V ∗∗ .

Since

〈u′(tk), v0 − u(tk)〉 ≤ ‖u′(tk)‖H
‖v0 − u(tk)‖H

≤ ‖u′(tk)‖H
‖v0 − u(tk)‖V ∗∗ ,

we thus have

‖u′(tk)‖H
+ �(v0)

‖u(tk) − v0‖V ∗∗
≥ Ck,

which forces

lim
k→∞ ‖u′(tk)‖H

= ∞,

contradicting the fact that u′ ∈ L∞(0, T ; H).
�
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The existence and uniqueness of weak solutions corresponding to arbitrary initial data

in D(�)
‖·‖

H now follow easily.

COROLLARY 4.6. Let u0 ∈ D(�)
‖·‖

H . The function u(t) := S(t)u0 is the unique
weak solution of the parabolic variational inequality associated to A and � with the initial
value u0.

Proof. Corollary 3.6 shows that u is a weak solution, and Lemma 4.4 verifies its
uniqueness. �

Corollary 4.6 reveals that {S(t) : t ≥ 0} is a semigroup of (nonlinear) contractions on

D(�)
‖·‖

H , as suggested earlier.

COROLLARY 4.7. For u0 ∈ D(�)
‖·‖

H and all t, τ ≥ 0, the semigroup identity,

S(t + τ)u0 = S(t)(S(τ )u0),

holds.

Proof. For each τ ≥ 0, we simply observe that u1(t) = S(t + τ)u0 and u2(t) =
S(t) (S(τ )u0) are weak solutions with the same initial value, S(τ)u0. �

5. Applications

Our first applications concern parabolic versions of some well-known elliptic free
boundary problems ([2], [11]). � denotes an open set in R

N with smooth boundary ∂�.

5.1. Signorini problems

Let p > 2N
N+2 be given, and define V := W 1,p(�), which embeds continuously into

H := L2(�). Define A : W 1,p(�) → [W 1,p(�)]∗ by

Au := − div(|∇u|p−2∇u) + |u|p−2u,

and let � : W 1,p(�) → R ∪ {∞} be the indicator functional of the set

K := {v ∈ W 1,p(�) : v ≥ 0 on ∂� }.
Since K is closed and convex, � is lower semicontinuous and convex, hence weakly

lower semicontinuous. It is well-known that the operator A is strictly monotone, hemicon-
tinuous, coercive and bounded.
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In this case, the approximation hypothesis (10) follows directly from the definition of
inequality in W 1,p(�) ([11], [16], [19]). If u is an arbitrary element of K , then there
exists a sequence {un} ⊂ C∞(�) such that un ≥ 0 on ∂� for each n and un → u

in W 1,p(�). Consequently, Aun ∈ L2(�) and un → u in L2(�). Finally, 0 ∈ ∂�(un),
so ∂�(un) ∩ L2(�) is not empty.

We can now apply Theorem 4.5 and Corollary 4.6. Given u0 ∈ D and a final time
T > 0, Theorem 4.5 provides the unique strong solution u ∈ L∞(0, T ; W 1,p(�)) ∩
C0,1(0, T ; L2(�)) which satisfies u(0) = u0 and

〈u′(t), v − u(t)〉 + 〈Au(t), v − u(t)〉 ≥ 0, ∀ v ∈ K,

for almost every t ≥ 0. Corollary 4.6 yields the unique weak solution corresponding to a
given initial value u0 ∈ L2(�).

Given an initial value u0 ∈ D, arguments similar to those used in the elliptic case ([2])
show that the strong solution just obtained solves the following initial-boundary-value
problem with nonlinear boundary conditions:


∂u
∂t

− ∇ · (|∇u|p−2∇u) + λ|u|p−2u = f for x ∈ �, t > 0
u(x, 0) = u0(x) for x ∈ �,

u ≥ 0, ∂u
∂ν

≥ 0, and u ∂u
∂ν

= 0 for x ∈ ∂�, t ≥ 0,

where ∂
∂ν

denotes the conormal derivative associated to A. These boundary conditions
model nonlinear diffusion in a domain � with a semi-permeable boundary ([6], [17]).

5.2. Obstacle problems

Let p > 2N
N+2 be given, and define V := W

1,p

0 (�), which embeds continuously into

H := L2(�). Define A : W
1,p

0 (�) → W−1,q(�) by

Au := − div(|∇u|p−2∇u);

this operator is strictly monotone, hemicontinuous, bounded, and coercive on W
1,p

0 (�).
Let ψ ∈ W 1,p(�) be a given obstacle such that

(i) ψ ≤ 0 on ∂� in W 1,p(�), and
(ii) there exists a sequence {ψn} ⊂ C∞

0 (�) which converges to ψ in W 1,p(�) and
satisfies ψn ≥ ψ on � in W 1,p(�) for each n.

Let � : W
1,p

0 (�) → R ∪ {∞} be the indicator of the closed convex set

K := {v ∈ W
1,p

0 (�) : v ≥ ψ on � in W 1,p(�)}.
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As in the previous example, � is weakly lower semicontinuous. Condition (i) guarantees
that K is not empty, and we will see that condition (ii) implies the necessary approximation
hypothesis (10).

Given an element u of K , we must find a sequence un in K such that

un → u in H, Aun ∈ H, and ∂�(un) ∩ H = ∅.

Note that 0 ∈ ∂�(v) for any v ∈ K , so the last of these conditions holds. Since u ≥ ψ

on � in W 1,p(�), there exists a sequence {vn} ⊂ C∞
0 (�) such that vn ≥ 0 on � and

vn → u − ψ in W 1,p(�). For each n, define un := vn + ψn ∈ C∞
0 (�), which clearly

belongs to K . Moreover, un → u in W 1,p(�), hence also in L2(�), and Aun ∈ L2(�).
The approximation hypothesis therefore holds.

Our results provide the semigroup {S(t) : t ≥ 0} on K
‖·‖

H corresponding to the
parabolic variational inequality associated to A and �. The function u(t) := S(t)u0 is
the unique strong solution of this problem if u0 ∈ D and is its unique weak solution

if u0 ∈ K
‖·‖

H . For a strong solution ([16]),

u′(t) + Au(t) = 0, on �+
t , u(t) = ψ otherwise,

where �+
t := {x ∈ � : u(t) > ψ} and its complement in � is the coincidence set ([11]).

5.3. Evolution in Orlicz-Sobolev spaces

Our final application treats parabolic problems in Orlicz-Sobolev spaces; see [1], [10],
[12], and [16] for more details concerning such spaces. There are surprisingly few results
for such problems, but some related references include [5], [8], and [15]. In [8], Elmahi
considers Young functions with controlled growth, whereas very rapidly growing Young
functions are our primary concern (as indicated by the prototype defined above in
equation (5)). In addition, these other works consider explicit operators which gener-
alize Leray-Lions operators to an Orlicz-Sobolev space setting. Since the functional �

defined below is not necessarily differentiable (even at a minimizer), we cannot write
down the associated Euler-Lagrange equation, as would be needed to apply the results of
Donaldson ([5]) or Robert ([15]). Moreover, taking advantage of the special variational
structure of the problems considered here seems simpler than the rather technical methods
used by Donaldson and Robert.

Let M be a Young function whose complementary Young function M satisfies the
�2 condition, and define V := W 1

0 EM(�), so that

V ∗ = W−1EM(�) = W−1LM(�) and V ∗∗ = W 1
0 LM(�).

Suppose that the desired pivot space structure V ∗∗ ↪→ H ↪→ V ∗ holds with H :=
L2(�); this is a constraint on the Sobolev conjugate M∗ of M which is analogous to our
restriction on p in the previous applications.
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Define the functional � : V ∗∗ → R ∪ {∞} by

�(v) :=
∫

�

M(|∇v|)dx. (31)

Given f ∈ H , define A : V ∗∗ → V ∗ by Au := −f . Lemma 3.14 of [10] verifies
the needed coercivity condition, and Le and Schmitt have shown that � is weak* lower
semicontinuous ([13]). Thus, it only remains to check the approximation hypothesis (10).

Letube an arbitrary element ofD(�), and letuε be the corresponding mollified sequence.

Gossez proved that uε
∗
⇀ u in V ∗∗ ([10]), and the compact embedding of V ∗∗ into H implies

that uε → u in H . The first condition of (10) is satisfied, and the second condition is vacuous
by our choice of A. The fact that the intersection ∂�(uε) ∩ H is not empty follows from
the differentiability of � on the (generally proper) subset W 1

0 EM(�) of V ∗∗ ([9]), which
in turn relies on the fact that M ∈ �2 ([16]).

We may now apply Theorem 4.5 and Corollary 4.6 to the parabolic variational inequality
associated to A and �. Given u0 ∈ D, Theorem 4.5 establishes the existence of a unique
strong solution u ∈ L∞(0, T ; V ∗∗) ∩ C0,1(0, T ; H) such that u(0) = u0 and

〈u′(t), v − u(t)〉 + �(v) − �(u(t)) ≥ 〈f, v − u(t)〉, ∀ v ∈ V ∗∗,

for almost every t ≥ 0. Equivalently, u(t) satisfies the subdifferential inclusion

f − u′(t) ∈ ∂�(u(t)), (32)

for almost every t ≥ 0. By analogy with the arguments of [13], we consider (32) to be the
appropriate interpretation of the parabolic equation

∂u

∂t
− div

(
m(|∇u|)

|∇u| ∇u

)
= f, (33)

with the initial condition u(0) = u0 ∈ D (and null Dirichlet boundary conditions included
in the definition of the space V ∗∗). The function m in equation (33) is the generator of the
Young function �,

M(t) =
∫ t

0
m(s)ds.

If the prescribed initial value belongs to the set D(�)
‖·‖

H , Corollary 4.6 yields the
unique weak solution u ∈ C(0, T ; H) of the associated problem.
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