
On the Nondegeneracy of Constant Mean Curvature SurfacesNick KorevaarUniversity of Utahkorevaar@math.utah.edu Rob Kusner�University of Massachusetts, Amherstkusner@math.umass.eduJesse RatzkinyUniversity of Utahratzkin@math.utah.eduSeptember 2, 2004AbstractWe prove that many complete, noncompact, constant mean curvature (CMC) surfacesf : �! R
3 are nondegenerate; that is, the Jacobi operator �f + jAf j2 has no L2 kernel. Infact, if � has genus zero and f(�) is contained in a half-space, then generically the dimensionof the L2 kernel is at most the number of non-cylindrical ends of f(�), minus three. Ourmain tool is a conjugation operation on Jacobi �elds which linearizes the conjugate cousinconstruction. Consequences include partial regularity for CMC moduli space, a larger classof CMC surfaces to use in gluing constructions, and a surprising characterization of CMCsurfaces via rolling spheres.1 IntroductionConstant mean curvature surfaces in R

3 are equilibria for the area functional, subject to anenclosed-volume constraint. The mean curvature is nonzero when the constraint is in e�ect, sowe can scale and orient the surfaces to make their mean curvature 1, a condition we abbreviateby CMC. Over the past two decades a great deal of progress has been made on understandingcomplete CMC surfaces and their moduli spaces, however many interesting open problems remain.One of the most important questions concerns the possibility of decaying Jacobi �elds on completeCMC surfaces, that is, the Morse-theoretic degeneracy of these equilibria. The main result of thispaper is to rule out such Jacobi �elds on a large class of complete CMC surfaces.For a given immersed surface f : � ! R
3, its mean curvature Hf is determined by thequasilinear elliptic equation �ff = 2Hf�f ;where � = �f is the (mean curvature, or inner) unit normal to f and �f is the Laplace-Beltramioperator. The surface f(�) is CMC if Hf � 1. The oldest examples of CMC surfaces are thesphere of radius 1 and cylinder of radius 1=2. Interpolating between these two examples arethe Delaunay unduloids, which are rotationally symmetric and periodic. A Delaunay unduloidis determined (up to rigid motion) by its necksize n, which is the length of the smallest closedgeodesic on the surface. A necksize of n = � corresponds to a cylinder of radius 1=2, and asn ! 0 one obtains the singular limit of a chain of mutually tangent unit spheres. The ODE�Partially supported by NSF grant DMS-0076085 (and by DMS-9810361 at MSRI)yPartially supported by an NSF VIGRE grant 1



determining the Delaunay surfaces still has global solutions when the necksize parameter is anynegative number; in this case the resulting Delaunay nodoids are not embedded.In the present paper we will study CMC surfaces in R
3 which are Alexandrov-immersed. Aproper immersion f : � ! R

3 is an Alexandrov immersion if one can write � = @M , where Mis a three-manifold into which the mean curvature normal � points, and f extends to a properimmersion of M into R
3. In the �nite topology CMC setting, M is necessarily a handlebody witha solid cylinder attached for each end. For example, the Delaunay unduloids are Alexandrov-immersed (in fact, embedded), but the Delaunay nodoids are not.In the remainder of this paper, all of the CMC surfaces are assumed to be complete, Alexan-drov immersions of �nite topology, or subsets of such surfaces.It is a theorem of Alexandrov [A] that the only compact, connected, Alexandrov-immersed,CMC surfaces are unit spheres. Here we are primarily interested in noncompact CMC surfaces.Korevaar, Kusner and Solomon [KKS] proved that each end of such a CMC surface is exponentiallyasymptotic to a Delaunay unduloid, that two-ended CMC surfaces are unduloids, and that three-ended CMC surfaces have a plane of re
ection symmetry. In fact, all triunduloids (three-ended,genus zero CMC surfaces) were constructed and classi�ed by Gro�e-Brauckmann, Kusner andSullivan [GKS], as were all coplanar k{unduloids (k{ended, genus zero CMC surfaces whoseasymptotic axes all lie in a plane [GKS2]). These authors de�ne a classifying map assigning eachcoplanar k{unduloid an immersed polygonal disc with k geodesic edges in S2, whose edge-lengthsare the asymptotic necksizes of the corresponding k{unduloid.The classifying map of [GKS, GKS2] is a homeomorphism, and gives information about thetopological structure of moduli space of coplanar k{unduloids. To obtain information about thesmooth structure of moduli space, one needs to understand the linearization of the mean curvatureoperator, which is the Jacobi operator Lf = �f + jAf j2;where jAf j is the length of the second fundamental form of f . Solutions to the Jacobi equationLfu = 0 are called Jacobi �elds, and correspond to normal variations of the CMC surface f(�)which preserve the mean curvature to �rst order. More precisely, if u is a Jacobi �eld, then theone-parameter family of immersions f(t) = f + tu� has mean curvature H(t) = 1 +O(t2). Thusone can think of Jacobi �elds as tangent vectors to the moduli space of constant mean curvaturesurfaces.De�nition 1 A surface f : � ! R

3 is nondegenerate if the only solution u 2 L2 to Lfu = 0 isthe zero function.Near a nondegenerate CMC surface f(�), a theorem of Kusner, Mazzeo and Pollack [KMP]shows that the moduli space of CMC surfaces is a real-analytic manifold with coordinates derivedfrom the asymptotic data of [KKS] (that is, the axes, necksizes, and neckphases of the unduloidasymptotes). In general the CMC moduli space is a real-analytic variety. Indeed, on a degenerateCMC surface, there would be a nonzero L2 Jacobi �eld u, which (by [KMP]) decays exponentiallyon all ends. The presence of such a Jacobi �eld means there exists a one-parameter family ofsurfaces f(t) with the same asymptotic data and with mean curvature 1 + O(t2), indicatinga possible singularity in the CMC moduli space. Thus, proving nondegeneracy eliminates thepotential for such singularities.Our main theorem bounds the dimension of the space of L2 Jacobi �elds on a large class ofCMC surfaces.Theorem 1 Let f : �! R
3 be a coplanar k{unduloid. Then the space of L2 Jacobi �elds on f(�)is at most (k � 2){dimensional. Moreover, if the span of the vertices of the classifying geodesicpolygon in S2 is R

3, then the space of L2 Jacobi �elds on f(�) is at most (k � 3){dimensional.2



As a corollary, we deduce that almost all triunduloids are nondegenerate. Recall ([GKS] and ourearlier discussion) that a triunduloid uniquely determines a spherical triangle whose edge-lengthsare the asymptotic necksizes n1; n2; n3. The spherical triangle inequalities imply n1+n2+n3 � 2�and ni + nj � nk. When these inequalities are strict, the vertices of the classifying triangle span
R
3, and so our main theorem asserts that the space of L2 Jacobi �elds is f0g.Corollary 2 Let f : � ! R

3 be a triunduloid. Then f is nondegenerate if its necksizes satisfythe strict spherical triangle inequalities.When a coplanar k{unduloid has cylindrical ends, Theorem 21 improves the dimension bound inTheorem 1, and shows many of these CMC surfaces are also nondegenerate (see Section 6).The main tool we develop is a conjugate Jacobi �eld construction, which converts Neumann�elds to Dirichlet �elds. This conjugate variation �eld arises from linearizing the conjugatecousin construction of [GKS]. Our construction is motivated by the analogous nondegeneracyresult of Cos��n and Ros [CR] for coplanar minimal surfaces. However, the geometry in thepresent case, and thus the proof, is quite di�erent, with interesting consequences. For example,we obtain new insight into the classifying map for triunduloids and, more generally, for coplanark{unduloids (see [GKS, GKS2]). The conjugate Jacobi �eld construction also yields a simple,synthetic characterization of constant mean curvature in terms of rolling a sphere along the surface(see Section 4).The paper is organized as follows. Notation and preliminary computations appear in Section 2.The conjugate Jacobi �eld construction is in Section 3. In Section 4 we develop the rolling spherecharacterization for CMC surfaces, and the interpretation of the classifying map for coplanark{unduloids. The proofs of Theorem 1 and Corollary 2 are in Section 5. Finally, we discuss someextensions and applications, as well as pose some related open questions, in Section 6.As with any mathematical problem which has been outstanding for so long, the present paperhas bene�ted from fruitful discussion with many people. In particular, we wish to thank JohnSullivan and Karsten Gro�e-Brauckmann for reading earlier drafts of this paper, and for theirhelpful suggestions.2 Notation and conventionsOn a simply connected domain of a CMC (or minimal) surface, we �nd it convenient to useconformal curvature coordinates. These are coordinates (x; y) = (x1; x2) on a domain 
 � R
2, sothat the mapping f : 
! R

3 which parameterizes the surface satis�esg11 := hfx; fxi = �2 = hfy; fyi =: g22; g12 := hfx; fyi = 0;and the (inner) unit normal � to the surface satis�esh11 := h�; fxxi = �h�x; fxi = �2�1; h22 := h�; fyyi = �h�y; fyi = �2�2; h12 := h�; fxyi = 0:In other words, choosing conformal curvature coordinates amounts to simultaneously diagonaliz-ing the �rst and second fundamental forms, g and h. In these coordinates, the shape operatorA = g�1h is diagonal with the principal curvatures �1; �2 as its entries. Equivalently, the x andy coordinate lines are principal curves. Notice that H = (�1 + �2)=2 is half the trace of A. Inwhat follows it will be useful to de�ne � := �2 � �1, and to adopt the convention �2 > �1 (awayfrom umbilic points). It also will be convenient to decompose the shape operator as A = B +C,where C = HI is the trace part and B = A � HI is trace-free. Thus, in conformal curvaturecoordinates, A and B have matricesA = � �1 00 �2 � ; B = � (�1 � �2)=2 00 (�2 � �1)=2 � = � ��=2 00 �=2 � :3



The existence of conformal curvature coordinates (away from umbilics) on a CMC surfacecan be seen using the Hopf di�erential, a holomorphic quadratic di�erential associated with B(see [Ho]). More precisely, suppose we have any conformal coordinates (u; v) on the surface, andconsider the complex coordinate w = u+ iv. The Codazzi equation implies the complex-valuedfunction � := (h11 � h22)=2 + ih12is holomorphic with respect to w if and only if H is constant. Under conformal changes ofcoordinates, the holomorphic quadratic di�erential� := �(w)dw2is invariant. This � is the Hopf di�erential of our CMC surface.Lemma 3 If 
 is simply connected and f : 
! R
3 is a conformal immersion of a CMC surfacewithout umbilics, then there exists a conformal change of coordinates so that f is an immersionwith conformal curvature coordinates, and so that � > 0. Moreover, in any conformal curvaturecoordinates, ��2 is a constant.Proof: Observe that umbilic points of f are precisely the zeroes of � = �(w)dw2 . Because 
is simply connected and f(
) has no umbilics, we can pick a branch ofp�(w). Make a conformalchange of coordinates z = z(w) = x+ iy by integrating the one-formdz := ip� = ip�(w)dw: (1)Then in the z coordinates, � = �dz2. This means h12 = 0, and so f(w(z)) is an immersion inconformal curvature coordinates. Also, h11 � h22 = �2 implies ��2 = 2, and so � > 0.Moreover, for any conformal curvature coordinates, h12 � 0, so �2� = ��2 is a real-valuedholomorphic function, and hence constant. ˜We now proceed with some preliminary computations using conformal curvature coordinates.These are elementary, but we include them for the convenience of the reader. Using the 
atLaplacian, �0 = @2x + @2y , the CMC equation is�2�ff = �0f = 2fx � fy = 2�2�;and the Jacobi equation reads �2Lfu = �0u+ �2(�21 + �22)u = 0: (2)Unlike the previous lemma, the next two do not require f to have constant mean curvature.However, they do require that f : 
! R

3 is an immersion in conformal curvature coordinates.Lemma 4 If f : 
! R
3 is an immersion in conformal curvature coordinates, with unit normal� and conformal factor � = jfxj = jfyj, then we havefxx = �x� fx � �y� fy + �1�2�; fyy = ��x� fx + �y� fy + �2�2�:Proof: The frame (fx; fy; �) is orthogonal, sofxx = ��2hfxx; fxifx+��2hfxx; fyify+hfxx; �i�; fyy = ��2hfyy; fxifx+��2hfyy; fyify+hfyy; �i�:One can then complete the proof by di�erentiating the equationshfx; fxi = �2 = hfy; fyi; hfx; fyi = hfx; �i = hfy; �i = 0:

˜4



Lemma 5 If f : 
 ! R
3 is an immersion in conformal curvature coordinates and u 2 C2(
),then one can write the complex structure of the surface f(t) = f + tu� +O(t2) asJ(t) = J0 + tJ1 +O(t2)where J0 = � 0 �11 0 � ; J1 = � 0 u�u� 0 � :Thus the coordinate-free expression for J1 is the product 2uJ0B, where B is the trace-free shapeoperator of f .Proof: In any oriented local coordinates,J = 1pdet(g) � �g12 �g22g11 g12 � :Using conformal curvature coordinates at t = 0, we compute the metric at t:g11 = hfx(t); fx(t)i = �2(1� 2tu�1) +O(t2)g22 = hfy(t); fy(t)i = �2(1� 2tu�2) +O(t2)g12 = hfx(t); fy(t)i = O(t2):Thus J(t) = 1�2p1� 2(�1 + �2)tu � 0 ��2(1� 2tu�2)�2(1� 2tu�1) 0 �+O(t2)= (1 + tu(�1 + �2)) � 0 �1 + 2tu�21� 2tu�1 0 �+O(t2);which yields the desired expansion. ˜Lawson [L] pioneered the conjugate cousin relation between CMC surfaces and minimal sur-faces in S3. The �rst order conjugate cousin construction was initiated by Karcher [K] anddeveloped in [G, GKS]. It uses the realization of S3 � R

4 = H as the unit quaternions, and of
R
3 = =H (the imaginary quaternions) as the Lie algebra of S3, or as the tangent space T1S3. Forimaginary quaternions p; q 2 R

3, we can write their product aspq = �hp; qi+ p� q: (3)In particular, orthogonal imaginary quaternions anti-commute. Thus we can also write the CMCcondition Hf � 1 as �0f = 2fxfy = 2�2�: (4)Let 
 � R
3 be a simply connected domain. Theorem 1.1 of [GKS] shows that conjugatecousins f : 
! R

3 and ~f : 
! S3 satisy the �rst order system of partial di�erential equationsd ~f = ~fdf � J0; (5)where J0 is the standard complex structure on R
2 and the product is the quaternion product.The integrability condition for ~f reduces to the CMC equation for f , and in this case the resultingsurface ~f(
) � S3 is minimal. Conversely, given a minimal immersion ~f , one can consider f asthe unknown in the system (5). Then the integrability condition for f is the minimality of ~f ,and the resulting surface f(
) � R

3 is CMC. Moreover, the immersions f and ~f are uniquelydetermined up to translation in R
3 and left translation in S3, respectively. One can also see fromequation (5) that f and ~f are isometric. 5



Lemma 6 The Jacobi operators for f and ~f coincide, and so we can identify Jacobi �elds onthe two surfaces.Proof: In general, the Jacobi operator for a two-sided (CMC or minimal) surface with normal� in a manifold with Ricci curvature Ric isL = �+ jAj2 +Ric(�; �):Since the Ricci curvature of R
3 or S3 is 0 or 2, respectively, for f and its cousin ~f we haveLf = �f + jAf j2; L ~f = � ~f + jA ~f j2 + 2:The two surfaces are isometric, so �f = � ~f . Moreover, we have (see Proposition 1.2 of [GKS])~�1 = �1 � 1; ~�2 = �2 � 1:Thus jA ~f j2 = ~�21 + ~�22 = (�1 � 1)2 + (�2 � 1)2 = �21 + �22 � 2(�1 + �2) + 2 = jAf j2 � 2:

˜3 Existence of the conjugate cousin variation �eldIn this section we construct a conjugate cousin variation �eld ~� on ~f from a normal variation �eldu� on f . The idea behind this construction is to linearize the conjugate cousin equation (5).We begin with a CMC immersion f : 
 ! R
3 of a simply connected domain and a solutionu : 
! R to the Jacobi equation (2). In general, u� is not the initial velocity of a one-parameterfamily of CMC surfaces f(t) = f + tu� +O(t2):Although one can always �nd such a family on a su�ciently small subdomain, the families willnot coincide on the overlaps of these subdomains. However, when there does exist such a one-parameter family of CMC surfaces, then one can de�ne a conjugate cousin family~f(t) = ~f + t~�+O(t2)by integrating equation (5). In this case, the two families are related by the systemd ~f(t) = ~f(t)df(t) � J(t); (6)where J(t) is the complex structure on f(t). Surprisingly, if the domain 
 is simply connected,then an initial velocity �eld ~� can be de�ned globally, even though this may not be possible forthe conjugate cousin family itself.Proposition 7 Let p be a point in a simply connected domain 
. Let f and ~f be conjugatecousins satisfying equation (5). Then for any Jacobi �eld u on 
, and any choice of initialvelocity ~�(p), there exists a unique global variation �eld ~� on ~f(
) which is locally associated tou in the manner described above. The �eld ~� satis�es the �rst order system of linear partialdi�erential equations d~� = ~fdf � J1 + ~fd(u�) � J0 + ~�df � J0: (7)Remark 1 The new variation �eld ~� need not be a normal �eld along ~f .6



Proof: We �rst sketch an abstract proof of the proposition, before giving a purely compu-tational one. Small patches of a CMC surface are graphical and therefore strictly stable. Thusone can always use the implicit function theorem to solve a family of Dirichlet problems for thenormal variation CMC equation, with boundary data f(t) = f+tu�. This yields a one-parameterfamily of CMC patches f(t) with t in a neighborhood of 0, and with initial velocity u� on sucha small patch. From these CMC patches, solve equation (6) for a family ~f(t) of minimal surfacepatches in S3, uniquely determined for each t once one speci�es a basepoint ~
(t) = ~f(t)(p). Theseconjugate cousin surfaces have an initial velocity �eld ~�. Note, ~�(p) = ~
0(0) can be adjusted atwill. Once we show that the �elds ~� all satisfy the �rst order system (7) we deduce not only localexistence for the initial value problem (as just described), but also uniqueness, since equation (5)reduces to a �rst order system of di�erential equations along any curve. Global existence anduniqueness then follow because 
 is simply connected.To derive our governing system (7) we expand the conjugate family equation (6) (using quater-nionic multiplication throughout):d ~f + td~�+O(t2) = d ~f(t) = ~f(t)df(t) � J(t)= ( ~f + t~�+O(t2))(df + td(u�) +O(t2)) � (J0 + tJ1 +O(t2))Equating the O(1) terms in this expansion gives the cousin equation (5). Equating the O(t) termsyields equation (7), completing our sketch of the abstract proof.A direct and instructive proof of Proposition 7 is to show that the �rst order system of partialdi�erential equations (7) satis�es the Frobenius integrability conditions, namely that the formalmixed partial derivatives are equal. Existence and uniqueness for the initial value problem thenfollows directly from the Frobenius theorem and the fact that 
 is simply connected. Verifyingthe mixed-partials condition amounts to showing that the formal computation of d(d~�) yields 0.Di�erentiating and expanding equation (7), we get eight terms:d(d~�) = d( ~fdf � J1) + d( ~fd(u�) � J0) + d~� ^ df � J0 + ~�d(df � J0) (8)= ~fdf � J0 ^ df � J1 + ~fd(df � J1) + ~fdf � J0 ^ d(u�) � J0 + ~fd(d(u�) � J0)+ ~fdf � J1 ^ df � J0 + ~fd(u�) � J0 ^ df � J0 + ~�df � J0 ^ df � J0 + ~�d(df � J0):It is easiest to analyze equation (8) term by term. We use conformal curvature coordinates tocompute coordinate-free identities. Since umbilic points are isolated (we are not considering sub-domains of spheres), continuity implies these identities hold everywhere. All terms are multiplesof the area form da = �2dx ^ dy, and two of the terms vanish:Lemma 8 df � J1 ^ df � J0 = 0 = df � J0 ^ df � J1:Proof: We compute df � J1 ^ df � J0:df � J1 ^ df � J0 = (u�fydx+ u�fx) ^ (fydx� fxdy) = u�(�fyfxdx ^ dy + fxfydy ^ dx)= u�(fxfy � fxfy)dx ^ dy = 0:Here fx and fy are orthogonal, so they anti-commute. We also havedf � J0 ^ df � J1 = �df � J1 ^ df � J0 = 0:
˜Using equation (4), the next lemma implies that two more terms sum to zero:Lemma 9d(df � J0) = ��0fdx^ dy = �2�2�dx^ dy = �2�da; df � J0 ^ df � J0 = 2�2�dx^ dy = 2�da:7



Proof: First we computed(df � J0) = d(fydx� fxdy) = fyydy ^ dx� fxxdx ^ dy = ��0fdx ^ dy = �2�2�dx ^ dy:Similarly,df � J0 ^ df � J0 = (fydx� fxdy) ^ (fydx� fxdy) = �fyfxdx ^ dy � fxfydy ^ dx = 2�2�dx ^ dy:̃The remaining terms involve the decomposition of the shape operator A into trace-free andtrace parts, B = A � C and C = HI = I , respectively. In fact, note that A = B + C is anorthogonal decomposition in the space of symmetric linear maps, so that, by the Pythagoreantheorem, jAj2 = jBj2 + jCj2:Lemma 10 d(df � J1) = �2[df(Bru) + jBj2u�]da:Proof: We compute, using Lemmas 4 and 3:d(df � J1) = d(u�fydx+ u�fxdy)= [ux�fx + u�xfx + u�fxx]dx ^ dy + [�uy�fy � u�yfy � u�fyy]dy ^ dx= [�(uxfx � uyfy) + u(�xfx � �yfy) + u�(fxx � fyy)]dx ^ dy= [�(uxfx � uyfy) + u(�xff � �yfy) + u�(2��1�xfx � 2��1�yfy � ��2�)]dx ^ dy= [�(uxfx � uyfy) + u(�xfx + 2���1�xfx � �yfy � 2���1�yfy � �2�2�)]dx ^ dy= [�(uxfx � uyfy) + u(2��2@x(��2)fx � 2��2@y(��2)fy � �2�2�)]dx ^ dy= [�(uxfx � uyfy)� �2�2u�]dx ^ dy = �2[df(Bru) + jBj2u�]da:
˜The next term we have is:Lemma 11 d(d(u�) � J0) = 2[df(Aru) + jAj2u�]da:Proof: We compute, using the Jacobi equation:d(d(u�) � J0) = d((u�)ydx� (u�)x)dy) = ��0(u�)dx ^ dy= �[u�0� + (�0u)� + 2hru;r�i]dx ^ dy= �[�u�2jAj2� � �2jAj2u� + 2ux�x + 2uy�y]dx ^ dy= (2�1uxfx + 2�2uyfy + 2�2jAj2u�)dx ^ dy = 2[df(Aru) + jAj2u�]da:
˜The �nal two terms actually coincide:Lemma 12 d(u�) � J0 ^ df � J0 = �[df(Cru) + jCj2u�]da = df � J0 ^ d(u�) � J0:Proof: Using the conformality relations �fx = fy and �fy = �fx, we haved(u�) � J0 ^ df � J0 = ((uy� + u�y)dx� (ux� + u�x)dy) ^ (fydx� fxdy)= ((uy� � �2ufy)dx � (ux� � �1fx)dy) ^ (fydx� fxdy)= (�uy�fx + �2ufyfx)dx ^ dy + (�ux�fy + �1ufxfy)dy ^ dx= (�uyfy � �2�2u�)dx ^ dy + (uxfx + �1�2u�)dy ^ dx= (�uxfx � uyfy � (�1 + �2)�2u�)dx ^ dy= (�uxfx � uyfy � 2�2u�)dx ^ dy = �[df(Cru) + jCj2u�]da;8



since CMC implies the trace-part C = I and thus jCj2 = 2. The other computation is similar. ˜Summing the results of the previous lemmas:d(d~�) = 2 ~f [df((A�B � C)ru) + (jAj2 � jBj2 � jCj2)u�]da = 2 ~f [0 + 0] = 0:This completes the proof of the proposition. ˜4 Homogeneous solutions, rolling spheres, and the classi-fying map via pole solutionsWe continue to consider a simply connected CMC surface f : 
 ! R
3 and its conjugate cousinsurface ~f : 
 ! S3. At this point, it is useful to pull the variation �eld ~� back to R

3 = T1S3.Thus we de�ne � := ~f�1~�:By the product rule and equation (5), we haved~� = d( ~f�) = ~f(df � J0)�+ ~fd�;however, by equation (7),d~� = ~fdf � J1 + ~fd(u�) � J0 + ~�df � J0 = ~f(df � J1 + d(u�) � J0 + �df � J0):Equating these two expressions, solving for d�, and applying equation (3), one obtainsd� = �(df � J0)� (df � J0)�+ df � J1 + d(u�) � J0 = 2�� df � J0 + df � J1 + d(u�) � J0: (9)4.1 Homogeneous solutions and rolling spheresEquation (9) is an inhomogeneous �rst order di�erential system for �, where the inhomogeneitydf � J1 + d(u�) � J0 = (�2df � Bu + d(u�)) � J0 depends linearly on the Jacobi �eld u. Thegeneral solution to such a system is the superposition of a particular with the general solutionto the associated homogeneous system. Hence we �rst study the homogeneous system (u � 0)associated to (9): d� = �(df � J0)� (df � J0)� = 2�� df � J0: (10)Notice that equation (10) implies � is perpendicular to d�, sod(j�j2) = 2hd�; �i = 0;and the solutions � to the linear system (10) have globally constant length. It follows that one canuse them to de�ne a path-independent parallel transport along f(
), mapping Tf(p)R3 ! Tf(q)R3isometrically. To see this, let 
 be path from p to q on the simply connected domain 
. Onerecovers �(f(q)) by integrating the solution to the initial value problem for equation (10), withinitial value �0 = �(f(p)). Since this parallel transport is path independent, it de�nes a 
atconnection on a principal SO(3)-bundle over 
.There is an interesting physical interpretation of this 
at connection. Notice that if oneintegrates equation (10) along any curve 
 then a solution � with unit length rotates with constantangular speed 2, with evolving axis of rotation given by the curve conormal, df �J0(
0(s)) = �(s).Note that the way to roll a sphere along the surface, without twisting or slipping, so that totalrotation is minimized, is to have the sphere rotate about an axis parallel to the contact curveconormal. (Precisely, the total rotation is the length of a path in SO(3), which we minimizesubject to the constraint that the rolling sphere is tangent to f(
) as it traverses f(
).) If thesphere has radius 1=2, and the contact point moves at speed 1, then the angular speed of rotation9



is 2. If the surface f(
) has mean curvature 1, and if the radius{1=2 sphere is on the outsideof the surface relative to the inner normal �, then the rolling sphere exactly reproduces our 
atconnection. (One must allow the sphere to immerse through the surface as necessary, for examplenear points with a principal curvature less that �2; in fact, the sphere should really roll with axistangent to the CMC surface, but that equivalent rolling motion would be impossible to carry outphysically.) In particular, if the rolling sphere follows a (contractible) loop on the surface, it willreturn with its initial orientation. This even gives a surprising property on a round sphere. Thephysical realization of this mathematical fact would make an interesting demonstration.Proposition 13 Let f : 
! R
3 be an immersion and consider the SO(3)-connection de�ned byrolling a sphere of radius 1=2 as described above. Then f(
) has mean curvature 1 if and only ifthis connection is 
at.Proof: Since we have just shown that the CMC condition implies the 
atness, it remains toprove the reverse implication. The assumption that the rolling sphere connection is 
at is exactlythe hypothesis that equation (10) is integrable for � on any simply connected domain 
, for anychoice of initial vector �(f(p)). Using equation (10), integrability implies0 = d(d�) = 2[2(�� df � J0)� df � J0] + 2�� (d(df � J0)):The second term is 2�� (��0f)dx^ dy. Expand the �rst term and then use the Jacobi identity:4(�� df � J0)� df � J0 = 4(�� (fydx � fxdy))� (fydx� fxdy)= 4(�(�� fy)� fx + (�� fx)� fy)dx ^ dy = 4�� (fx � fy)dx ^ dy:Now combine these two terms to obtain0 = d(d�) = 2�� (2fx � fy ��0f)dx ^ dy:Because � can be chosen to have any value at a point, we deduce that f solves equation (4). ˜The solutions � to the homogeneous system (10) can also be expressed naturally in terms ofthe quaternion geometry of S3 and the conjugate surface equation for ~f : 
! S3: Following theideas in the abstract sketch of the proof of Propsition 7, letq(t) = 1 + t�+O(t2)be a smooth curve of unit quaternions, passing through 1 at time t = 0, with � 2 T1S3 = R

3,a �xed imaginary quaternion. Consider the family of left translations q(t) ~f of the mapping ~f ,and note that since the translation isometry is on the left, each of these surfaces satis�es theconjugate cousin equation, d(q(t) ~f) = (q(t) ~f )df � J0: Therefore, the velocity ~� = � ~f of the familyat t = 0 solves the homogeneous (u � 0) version of equation (7), and� := ~f�1~� = ~f�1� ~f (11)solves equation (10). (One can also check by direct computation that � = ~f�1� ~f solves equation(10).) By varying � one obtains in this manner the unique solution to each initial value problemfor equation (10).Continuing our interpretation of equation (11), we see that an equivalent way to understandthe rolling-sphere 
at connection on f(
) is as the pullback from ~f(
) to f(
) of a natural doublecovering S3 ! SO(3), arising from quaternion conjugation: for each imaginary quaternion � 2 R
3and each q 2 S3, write Rq(�) := q�1�q: (12)We have seen that for �xed � the R

3-valued �eld on S3 de�ned by equation (12) pulls back to asolution of equation (10) on f(
). More generally, for each q 2 S3 the linear map Rq is actually10



a rotation (in SO(3)), and the 
at connection on f(
) is the pullback of this rotation �eld fromS3.Actually the involuted conjugation map q ! Rq�1 is a double covering homomorphism fromS3 to SO(3). This is easy to see directly from equation (12): the identity rotation Rq = I arisesif and only if the unit q commutes with all quaternions, which is equivalent to q 2 f1;�1g: Thehomomorphism property then implies that Rq1 = Rq2 if and only if Rq1(q2)�1 = I , that is, q1; q2are equal or opposite.One can check that q ! Rq is onto SO(3) by explicitly computing the rotation given by Rq .If we write q = exp(t�), where � is a unit imaginary quaternion, then we claim that Rq is arotation with axis �, and that Rq rotates an amount �2t in the positive direction about the �-axis. Quaternion algebra veri�es these claims. First verify that � is �xed by Rq:Rexp(t�)(�) = exp(�t�)� exp(t�) = �;because the three terms in the product commute. Next consider an imaginary quaternion �perpendicular to �: Rexp(t�)(�) = exp(�t�)(� exp(t�))= exp(�t�)(exp(�t�)�) = exp(�2t�)�= cos(2t)�� sin(2t)(� � �):Since f�; � � �; �g is positively oriented, it follows that � is rotated by an angle �2t about the� axis, as claimed.We conclude from this discussion that the rotation of the rolling sphereR := R ~f : 
! SO(3)is nothing more than the conjugate cousin ~f followed by the natural covering map S3 ! SO(3).Because ~f is harmonic, so is the map R. (One can verify this directly using (10) to computeR�1�0R = (R�1Rx)2 + (R�1Ry)2;which is the equation for a harmonic map from 
 � R
2 to SO(3), see [U]). Furthermore, thesolution � to equation (11) is R(�).4.2 Pole solutions to the homogeneous equation and the classifyingmap for coplanar k{unduloidsThe �-�elds which solve the homogeneous system (10) yield a new perspective on the classifyingmap [GKS, GKS2] for coplanar k{unduloids.Let f : � ! R

3 be a coplanar k{unduloid with asymptotic necksizes n1; : : : ; nk. By [KKS],f(�) is Alexandrov symmetric: it has a re
ection plane of symmetry, which we normalize tobe the xy plane; furthermore, the closures of each half of f(�), f(�+) = f(�) \ fz > 0g andf(��) = f(�) \ fz < 0g, are graphs over a (possibly immersed) planar domain. Because � hasgenus zero, �� are topological discs. The common boundary @f(��) is the union of k oriented,planar, principal curves 
1; : : : ; 
k, where 
j connects the end Ej�1 to Ej , using the natural cyclicordering of the ends (see [GKS2]). The con�guration for a triunduloid (k = 3) is indicated inFigure 1.The evolution of solutions to equation (10) is easy to track along curves of constant conormal�(s) = df � J0(
0(s)), since the conormal is the rotation axis. With our convention that the innernormal � = 
0(s)�(s) = 
0(s) � �(s), and our choice of curve orientation in Figure 1, we seethat the rotation axis along each 
j is the vertical vector � = �e3, so that the rotation appearscounterclockwise from above, as indicated in the �gure.11



Figure 1: Triunduloid con�guration from aboveDe�ne unit-length pole solutions P1; : : : ; Pk to equation (10), so that � = Pj is the uniquesolution to the initial value problem on f(��+), with initial value Pj = e3 at some point (henceall points) of 
j . Then the cyclically ordered k-tuple of unit vector �elds (P1; : : : ; Pk) on f(��+)determines an oriented polygonal loop on S2, unique up to rotation and computable at any pointof f(��+). We can compute the pairwise S2{distances between successive vertices by studying theasymptotic behavior along the corresponding ends. Since each end converges exponentially to aDelaunay unduloid we can �nd curves cj on end Ej which are exponentially close to the planarnecks of the limit Delaunay unduloids. Exact unduloid necks with the orientation indicated inFigure 1 have conormal pointing in the axis aj direction, so along the curves cj every solution �to equation (10) satis�es d�(c0j) = 2�� df(J0(c0j)) ' 2�� aj :This implies that (up to exponentially decaying terms, which are negligible) each unit � rotateswith angular speed 2 about the aj axis as it traverses cj . The total length of cj is nj=2, so thetotal rotation angle along cj is nj . Choose positively oriented frames faj ; bj ; e3g for each end Ej ,as indicated in Figure 1. Then as we traverse cj the pole solution Pj rotates in a great circle ofS2, clockwise in the plane spanned by bj and e3, and we deduce that the distance from Pj to Pj+1is nj . Thus the edge lengths of the polygonal loop are exactly the necksizes n1; : : : ; nk of f(�).This loop is the boundary of the polygonal disc used in [GKS2] to classify coplanar k{unduloids.Even in the Delaunay case (k = 2) the �-�elds contain useful information.Proposition 14 Let f(�) be a CMC Delaunay unduloid.� If f(�) is not a cylinder then its pro�le curve has period � when parameterized by arclength(see also [GKS]).� If f(�+) is non-cylindrical then the only solution to equation (10) which satis�es h�; �i = 0along both 
1; 
2 is the zero solution. If f(�+) is cylindrical, then the pole solutions P1; P2are opposites, and are tangential to f(�+), that is hPj ; �i � 0. Each solution � of equation(10) satisfying h�; �i = 0 along both 
1; 
2 is a multiple of P1 = �P2.12



Proof: Starting at the initial point of c1, follow the pole solutions around the contour inFigure 2, which depicts one period of an unduloid. We see that the pole P1 must return tothe vertical position after traversing the second neck c2. This is only possible if P1 has rotatedthrough a total angle of 2�k for some positive integer k as it travels from c1 to c2 along 
2.However, P1 rotates with speed 2 along 
2, so the length of the 
2{arc must be k�. In the zeronecksize limit, this arc is half a great circle on a unit sphere, so it has length �. Thus, by thecontinuity of the family of Delaunay unduloids, the period of each unduloid is �.

Figure 2: Delaunay con�guration from aboveFor the second part of this proposition, suppose � 6= 0 solves equation (10) and h�; �i = 0along 
1; 
2. If � has a nonzero horizontal component along the boundary curve 
1, then as onetraverses 
1 this component rotates with angular speed 2. Thus the horizontal component of �will be perpendicular to the axis of the unduloid at points distributed with period �=2. At suchpoints h�; �i 6= 0. Therefore � is vertical along 
1, and � = cP1 for some constant c. However, wehave just seen that the pole solution P1 has a nonzero horizontal component after traversing theneck c1. Thus the same argument shows c = 0.If f(�) is a cylinder then P1 = �P2 and the solution � = cP1 persists. Furthermore, � remainsexactly parallel to the tangent vector as it traverses the radius 1=2 circular cross-sections of thecylinder, so it is tangent to f(�+). ˜There is an interesting consequence and generalization of the fact that the period of anyDelaunay unduloid is �. Consider a coplanar k{unduloid and let Lj be the length of the curve
j obtained by truncating at the (asymptotically exact) necks cj�1 and cj . By the previousproposition, the length mod � of these curves has a well-de�ned limit as the truncations approachin�nity. We call this limit L1j .Proposition 15 Let �j be the interior angle at the vertex Pj of the spherical polygon associatedto f(�), and let �j be the angle between the asymptotic axes aj�1 and aj (see Figure 1). Then2L1j = � + �j + �j mod 2�:Remark 2 This result is equivalent to the relation found (Proposition 7 of [GKS0]) for the twistangle of the conjugate cousin minimal surface around each of its boundary Hopf circles.Proof: One can see from equation (10) that after traversing 
j , the horizontal components ofthe arc from Pj�1 to Pj have rotated through an angle 2Lj . As indicated by the angle relations13



illustrated in Figure 3 (for j = 2 on a triunduloid), this must be asymptotically equal (up tomultiples of 2�) to � + �j + �j . ˜

Figure 3: The top view of the pole solutions just before traversing the second neck5 The proof of the main theoremWe prove Theorem 1 in this section.The proof uses two features of the Alexandrov symmetry satis�ed by a coplanar k{unduloidf : �! R
3. First, the re
ection symmetry lets us decompose any Jacobi �eld u into the sum ofan even part u+ and an odd part u�. We call an even �eld Neumann because its restriction to�+ satis�es Lf (u+) = 0; @u+@� ����@�+ = 0;where � is the (outer) conormal to @�+. Similarly, we call an odd �eld Dirichlet since it vanisheson @�+. Second, the graphical nature of f(�+) implies that v := �h�; e3i is a positive DirichletJacobi �eld on f(�+). Using v as a comparison, we show in Section 5.1 that 0 is the only L2Dirichlet Jacobi �eld. This analysis so far carries through for coplanar CMC surfaces of anygenus.In order to analyze the Neumann Jacobi �elds in Section 5.2, we use the conjugate variation�eld ~� constructed in Section 3. This requires �+ to be simply connected, that is, � must havegenus zero.Let V denote the space of L2 Jacobi �elds on f(�).5.1 Dirichlet Jacobi �eldsWe give two proofs of Proposition 17 below. The �rst proof uses the strong maximum principleto show that if u 2 L2 is a Dirichlet Jacobi �eld it must vanish. This proof is analogous to thestandard proof that the �rst eigenvalue of � on a bounded domain 
 is simple. The second proofwe present is an integral version of the same maximum principle argument, which we strengthento deduce the result for bounded Dirichlet Jacobi �elds. Both proofs compare u to the verticaltranslation �eld v := �h�; e3i = ��3. Notice that v > 0 on �+ and v = 0 on @�+.14



To apply our maximum principle arguments comparing u to v, we need to knowv� := @v@� � �� < 0on @�+. (We continue our convention that � is the outer conormal, which in this case is �e3along @�+.) One can quickly deduce this inequality for some positive �, because it is true nearthe ends (with � = 1) and since on any compact subset of @�+ the Hopf boundary point lemmagives a (noncomputable) value for �. The following lemma shows that we may take � = 1 alongall of @�+. We include this lemma, which is a reinterpretation of height and gradient estimatescarried out in [KKS, KK], for its geometric consequences.Lemma 16 Let f(�) be an Alexandrov symmetric CMC surface with �nite topology which is nota sphere. The boundary @f(�+) is a union of principal curves on f(�) with principal curvature�1 < 1. In particular, the symmetry curves do not contain umbilics, and �2 = h�; e3i� = �v� > 1.Proof: Because @f(�+) is the �xed point set of a re
ection symmetry for f(�), it is a unionof principal curves.By the CMC equation, we have �f (z) = 2�3;where z is the restriction of the vertical coordinate to the surface f(�+). Also, because thecomponents of the normal � satisfy the Jacobi equation, we have�f (�3) = �jAj2�3 � �2�3;Here we have used that jAj2 � 2 and �3 < 0. Thus we have�f (z + �3) = (2� jAj2)�3 � 0;and so z + �3 is a subharmonic function on �+. On @�+, each function vanishes, so z + �3 = 0.By explicit computation, z + �3 � 0 on the unduloid ends of ��+. Thus in (the interior of) �+,z + �3 < 0by the strong maximum principle. (Equality can only hold when f parameterizes a unit hemi-sphere.)By the Hopf boundary point lemma,0 < @@� (z + �3) = �1 + @�3@� = �1 + @@� h�; e3i:We can rearrange this to obtain the curvature perpendicular to the boundary�2 = @@� h�; e3i = �v� > 1; (13)and so the principal curvature along the boundary is�1 = 2� �2 < 1:
˜Proposition 17 Let f(�) be an Alexandrov symmetric CMC surface (see Section 4.2) of �nitegenus and with a �nite number of ends. Every bounded odd (Dirichlet) Jacobi �eld u on f(�) isa constant multiple of the vertical translation �eld v = �h�; e3i = ��3. In particular, if u 2 Vthen u is an even (Neumann) Jacobi �eld (unless f(�) is a unit sphere).15



First proof: After possibly replacing u with �u, we can assume u > 0 somewhere. Now let� > 0 be a positive parameter. We assume for this �rst proof that u 2 V , so by [KMP] u and itsderivatives decay exponentially. Combining this exponential decay with inequality (13), we seethat for � su�ciently large �v > ueverywhere in the interior of �+, with equality on @�+. We de�ne�� = inff� > 0 j �v(p) > u(p) ; p 2 �+g:There is some �nite q which is a critical point of ��v � u with critical value 0. The point q liesin either the interior or the boundary of �+. In both casesu(q) = ��v(q); ru(q) = ��rv(q);and u � ��v on �+. In either case, the strong maximum principle (the Hopf boundary pointlemma if q 2 @�+) implies u � ��v. Because u 2 L2, this implies �� = 0 and thus u � 0. ˜Second proof: We initially assume u 2 V , rather than the more general hypothesis that uis a bounded Dirichlet Jacobi �eld. For this proof it is technically simpler to consider the entiresurface f(�). Recall that both u and v are odd with respect to re
ection through the Alexandrovplane of symmetry, and by inequality (13) u=v is uniformly bounded on the complement of thesymmetry curves, which is fv 6= 0g. Also, both u and v are real analytic functions which vanishon the symmetry curves. These facts imply that u=v extends to an even, real analytic functionon the entire surface f(�). To verify analyticity on fv = 0g, use conformal curvature coordinatesin which the x{axis is a symmetry curve; the fact that u and v both vanish on the x{axis meanswe can writeu(x; y) = yU(x; y); v(x; y) = yV (x; y); u(x; y)v(x; y) = yU(x; y)yV (x; y) = U(x; y)V (x; y) ;where U and V are also real analytic and V 6= 0 near the x{axis by Lemma 16.Continuing with the second proof, assume that u=v > 0 somewhere. Since u=v is nonconstant,we can pick a regular value � > 0 for u=v with nonempty inverse image. The domain
� := fu=v > �gis bounded (because u 2 L2) and has smooth boundary in �. Since (u=v)� < 0 pointwise along@
�, Z@
� v @u@� � u@v@� = Z@
� v2 @(u=v)@� < 0: (14)However, we also have 0 = Z
� vLfu� uLfv = Z
� v�fu� u�fv (15)= Z@
� v @u@� � u@v@� = Z@
� v2 @(u=v)@� :This last equation (15) contradicts the previous inequality (14), proving u � 0.We now explain how to extend this argument to prove that any bounded Dirichlet Jacobi�eld u is a constant multiple of v. We assume u=v is nonconstant and positive somewhere, picka regular value � > 0, and de�ne the nonempty set 
� as before. In this case the inequalty (14)still holds, but we cannot immediately deduce equation (15) because 
� may be unbounded. Weovercome this di�culty by appealing to the linear decomposition lemma of [KMP], which impliesthat on each end Ej , we have exponential convergenceu ' 3Xi=1 aij�i;16



where �i are the components of the normal vector to the asymptotic unduloid. (In the case whenthe end Ej is cylidrical, one must also include Jacobi �elds arising from changing the necksize,which are even.) Because u is odd, we must have u ' aj�3 := a3j�3 on the end Ej , and so u=vconverges smoothly to a constant �aj on the end Ej . (A priori, these constants may di�er fromend to end.)Now we truncate the domain 
� by intersecting f(�) with a sequence of balls, de�ning
�;N := fp 2 
� : jf(p)j � Ng = 
� \ �BN (0);where N = 1; 2; 3; : : : . Then equation (15) becomes0 = Z
�;N uLfv � vLfu = Z@
�\BN uv� � vu� + Z
�\@BN uv� � vu� : (16)But as soon as N is large enough so that @
�\BN has positive length, inequality (14) implies the�rst term is negative, and in fact it is decreasing in N ; also, the second terms converge uniformlyto zero by our previous discussion of the asymptotics. This contradiction shows u is a constantmultiple of v. ˜5.2 Neumann Jacobi �eldsGiven a Jacobi �eld u on the coplanar k{unduloid f(�), the conjugate �eld ~� de�ned by equa-tion (7) yields a conjugate Jacobi �eld ~u := h~�; ~�i on the surfaces ~f(�+) and f(�+). By thecorrespondence ~� = ~f� relating solutions of equations (7) and (9), we see~u = h~�; ~�i = h ~f�; ~f�i = h�; �i:Our plan is to convert even (Neumann) Jacobi �elds u 2 V into L2 Dirichlet Jacobi �elds~u, use Proposition 17 to deduce ~u � 0, and use this to show u � 0. In order to carry out thisprocedure, u must satisfy a �nite number of linear conditions, which is why Theorem 1 onlybounds the dimension of V , rather than asserting V = f0g.Since each u 2 V decays exponentially on all ends, the corresponding conjugate �elds � areasymptotic to solutions of the homogeneous equation (10). By [GKS2], f(�) has at least twonon-cylindrical ends, one of which we label Ek (see Figure 1). From Proposition 14 in Section 4.2,a necessary condition for attaining zero Dirichlet data on the end Ek is that � must converge to 0,and so we specify a unique conjugate �eld � associated to u by setting � = 0 on this non-cylindricalend Ek. Starting at Ek, we compute how � changes along the contours 
j , and along the endsEj .By Lemma 16, the 
j are principal curves, with curvature �1 < 1 and constant conormal �e3.We have seen by Proposition 17 that u 2 V is even. Thus we haved�(
0j) = 2�� df � J0(
0j) + df � J1(
0j) + d(u�) � J0(
0j)= �2�� e3 + u(�2 � �1)f� + u�� + u��= �2�� e3 + u(�1 � �2 + �2)e3 + u��= �2�� e3 + u�1e3along 
j . The geometric interpretation of this equation is that the horizontal part of � rotatesabout e3, counterclockwise with speed 2, and the vertical part of � changes at a rate of u�1. Nowset hj(u) := Z
j d(h�; e3i) = Z
j u�1ds; (17)where s is the arc-length parameter along 
j . These heights hj(u) measure the change in thevertical components of � as one traverses 
j . They play a key role in our analysis.17



The integration de�ning the heights hj(u) associates a real number to each symmetry curve
j . We encode this by de�ning the linear transformation T : V ! R
k byT (u) = (h1(u); : : : ; hk(u)): (18)Proposition 18 Let f(�) be a coplanar k{unduloid, and let V be the space of L2 Jacobi �eldson f(�). Then the linear transformation T : V ! R

k de�ned by expression (18) is injective. Inparticular, the dimension of V is at most k.Proof: We prove this proposition in two steps. First, show that T (u) = 0 implies theconjugate Jacobi �eld ~u, which is uniquely de�ned by our choice that � = 0 on the non-cylindricalend Ek, must be identically zero. The second step is to show that whenever ~u � 0 then u � 0.As we traverse 
1 from the end Ek to the end E1 only the vertical part of � changes, and thetotal change in this component is h1(u) = 0. Thus �(p) converges exponentially to 0 on 
1 asp approaches in�nity on the end E1. Since � also converges to a homogeneous solution on E1,we see that � converges to 0 on the entire end E1. Repeat this argument successively, traversing
j from Ej�1 to Ej , using the hypothesis that each hj(u) = 0. We deduce that � convergesto 0 exponentially along each end and that it remains vertical along each 
j . Thus ~u = h�; �idecays exponentially to zero along each end and is a Dirichlet �eld, because � is vertical and � ishorizontal along each 
j . Therefore, after extending ~u to all of f(�) by odd re
ection, Proposition17 implies ~u � 0.We proceed to the second step, which we set aside as a lemma.Lemma 19 If the conjugate Jacobi �eld ~u is identically zero, then so is u.Proof: We assume ~u = h~�; ~�i � 0, that is, the vector �eld ~� is tangent to ~f(�+). Wepull ~� back to �+ and denote its 
ow by X~�(t). For small values of t, this is a di�eomorphismX~�(t) : �+ ! �+, because � is parallel to the conormal, and so ~� is tangent along @ ~f(�+). Nowde�ne the one-parameter family of immersions~f(t) = ~f �X~�(t) : �+ ! S3:This provides a family of reparameterizations of the minimal surface ~f(�+) � S3.We produce a family of CMC surfaces f(t) in R
3 by taking the conjugate cousin of this familyof reparameterization of ~f(�+). Rearrange the conjugate family equation (6) to readdf(t) = � ~f(t)�1d ~f(t) � J(t): (19)Using the inhomogeneous equation (7) for � and ~f(t) = ~f + t~�+O(t2) = ~f(1+ t�+O(t2)), expandequation (19) in powers of t. One recovers d(u�) as the O(t) term in the expansion of df(t):df(t) = �( ~f(1 + t�))�1[(d ~f)(1 + t�) + t ~fd�] � (J0 + tJ1) +O(t2)= �(1� t�) ~f�1[d ~f � J0 + t((d ~f � J0)�+ d ~f � J1 + ~fd� � J0)] +O(t2)= � ~f�1d ~f � J0 + t[� ~f�1d ~f � J0 � ~f�1(d ~f � J0)�� ~f�1d ~f � J1 � d� � J0] +O(t2)= df + t[��df + df�� df � J0 � J1 � (��df + df�� d(u�) + df � J1 � J0)] +O(t2)= df + td(u�) +O(t2):We used the facts that J20 = �I and J0 � J1 = �J1 � J0 in the last steps.Integrate the one-form df(t) = df + td(u�) + O(t2) to recover the immersion f(t). In thisintegration we are free to choose the value of f(t) at a basepoint p 2 �+, and choose f(t)(p) =f(p) + tu�(p). Then for any compact set K � �+ and q 2 K, we havef(t)(q) = f(p) + tu�(p) + Z qp df(t)= f(p) + tu�(p) + Z qp d(f + tu�) +O(t2)) = f(q) + tu�(q) +O(t2):18



However, this one-parameter family f(t) is a conjugate cousin family for the �xed surface ~f(�+),so by Theorem 1.1 of [GKS], the surfaces f(t) can only vary by a family of translations. Takingthe derivative at t = 0, this implies u is the normal part of an R
3 translation, which impliesu 62 L2. Thus ~u � 0 implies u � 0, completing the proof that T is injective. ˜Proposition 20 Suppose f(�) is a coplanar k{unduloid. Let u 2 V, and let P1; : : : ; Pk be thepole solutions to the homogeneous equation (10) associated to the symmetry curves 
1; : : : ; 
k.Then for the constants hj := hj(u), we have the linear relationkXj=1 hjPj � 0 (20)on f(�+). Thus, if the vertices of the classifying polygon for f(�) span an l-dimensional subspaceof R

3, then V is at most (k � l){dimensional.Proof: Let � be the conjugate variation �eld which solves equation (9) for the given u 2 V ,with � = 0 on the end Ek. Traversing 
1 from Ek to E1, as in the previous proposition, weconclude that � converges exponentially to the homogeneous solution h1P1 on the end E1. Thus�1 = �� h1P1 solves equation (9) with inital value 0 on E1, and evolves along 
2 with a verticalchange of h2. Thus �1 converges to the homogeneous solution h2P2 along the end E2, so � convergesto h1P1+h2P2 along this end. Continuing this reasoning and traversing the remaining 
j in order,one returns to the end Ek, with � converging to the homogeneous solution h1P1 + � � � + hkPk.Since � is well-de�ned, this sum must be the initial asymptotic homogeneous solution 0. Thisshows the linear dependence (20).Evaluating the pole solutions at a point q 2 �+ yields vertices for a representative classifyingpolygon for f(�). The linear relation (20) implies that (h1; : : : ; hk) solves a homogeneous systemof rank l = dim spanfP1(q); : : : ; Pk(q)g � 3. Since the solution space of this system is (k � l){dimensional, and the linear transformation T de�ned by equation (18) is injective, we concludethat dimV � k � l. ˜Using the fact that the vertices of the classifying polygon of a coplanar k{unduloid span atwo- or three-dimensional subspace of R
3 [GKS2], this completes the proof of Theorem 1, and, asexplained in the introduction, Corollary 2.6 Extensions, applications and open questionsOne can sharpen the proofs of Theorem 1 and Corollary 2 to show that triunduloids with acylindrical end are also nondegenerate. The theorem below includes these triunduloids as aspecial case, and applies to a more general class of k{unduloids. By Theorem 1:5 of [GKS2], acoplanar k{unduloid has at least two non-cylindrical ends.Theorem 21 Let f(�) be a coplanar k{unduloid. If f(�) has d non-cylindrical ends and thevertices of the classifying polygon span an l{dimensional subspace of R

3, then the space V of L2Jacobi �elds has dimension at most d� l. In particular, if f(�) has exactly two non-cylindricalends, or three non-cylindrical ends and classifying polygon with vertices spanning R
3, then it isnondegenerate.Proof: By Proposition 17, any u 2 V is even, so we proceed as in Section 5.2. The keyidea in the proof is the observation (see Proposition 14) that if Ej is a cylindrical end, then thepole solutions Pj and Pj+1 are opposites, and are asymptotically tangent along Ej . In otherwords, given u 2 V and a corresponding conjugate variation �eld �, if � is vertical along 
jthen it is asymptotically tangent on Ej and continues to be vertical on 
j+1. Therefore, theconjugate Jacobi �eld ~u = h�; �i vanishes on 
j [ 
j+1 and decays along Ej . More generally, if19



(Er; : : : ; Es�1) is a string of adjacent cylindrical ends and � is vertical on 
r, then it is vertical onall the symmetry curves 
r [ � � � [ 
s, implying ~u vanishes on these symmetry curves and decayson the ends Er; : : : ; Es�1.We now develop the combinatorial tools needed to complete the proof. The distribution of non-cylindrical ends on f(�) leads to a partitioning of the cyclically ordered set of symmetry curves(
1; : : : ; 
k) and their corresponding pole solutions (P1; : : : ; Pk) into substrings. Our substringshave the form C := (
r; 
r+1; : : : ; 
s), where the ends Er; Er+1; : : : ; Es�1 are cylindrical whileEr�1 and Es are not. In other words, 
r [ � � � [ 
s connects the non-cylindrical end Er�1 to thenext non-cylindrical end Es, through adjacent cylindrical ends. Notice that the singleton C = (
j)is a substring if neither Ej�1 nor Ej are cylindrical ends. Because each substring corresponds toa path joining one non-cylindrical end to the next non-cylindrical end in the cyclic ordering, thetotal number of elements of the partition equals the number of non-cylindrical ends d on f(�).If C = (
r; : : : ; 
s) is a substring then, by the previous discussion, the corresponding polesolutions (Pr; : : : ; Ps) are all parallel; in fact, for r � j � s, we have Pj = (�1)j�rPr = (�1)s�jPs.Moreover, if ~u decays on Er�1 and ifsXj=r hj(u)Pj = ( sXj=r(�1)s�jhj(u))Ps = 0;then ~u vanishes on 
r [ 
r+1 [ � � � [ 
s and ~u also decays on the ends Er; : : : ; Es. We now de�nethe linear transformation T̂ : V ! R
d byT̂ (u) := (ĥ1(u); : : : ; ĥd(u)) := ( s1Xj=r1(�1)s1�jhj(u); : : : ; sdXj=rd(�1)sd�jhj(u));where the mth string of the cyclic partition is (
rm ; : : : ; 
sm). If T̂ (u) = 0, then each alternatingsum ĥm(u) is zero, and so ~u is an L2 Dirichlet Jacobi �eld. Lemma 19 then implies u � 0.Therefore, T̂ is injective.The linear relation (20) now reads0 � kXm=1hmPm = dXm=1( smXj=rm(�1)sm�jhj)Psm = dXm=1 ĥmPsm :As in the proof of Lemma 19, this linear system has rank l = dimfspanfPs1 ; : : : ; Psdg � 3, so thesolution space is (d� l){dimensional. Since T̂ : V ! R

d is injective, we deduce that dimV � d� l.̃Using Proposition 21, we can show:Corollary 22 The set of nondegenerate triunduloids is connected.Proof: The triunduloids satisfying the strict spherical triangle inequalities comprise a disjointunion of two open three-balls, corresponding to small or large classifying triangles. The modulispace of triunduloids is the union of the closure of these balls. Thus, to show connectedness,it su�ces to �nd a nondegenerate triunduloid satisfying the weak spherical triangle inequalities,which lies in the closure of both these balls. Any triunduloid with a cylindrical end is such asurface. ˜6.1 Regularity of moduli space and applications to gluingWe have already noted in the introduction that a basic application of nondegeneracy is showingthat the CMC moduli space is a smooth manifold.20



Another application is to gluing constructions, where one often needs to assume that thesummands are nondegenerate. One particular gluing construction is end-to-end gluing (Theorem1 of [R]), which proceeds as follows. Suppose f1(�1) and f2(�2) are two nondegenerate CMCsurfaces with ends Ej � fj(�j), such that E1 and E2 are asymptotic to congruent Delaunayunduloids which is not a cylinder. We must also assume that f1 belongs to a one-parameterfamily of CMC surfaces which changes the necksize of E1 to �rst order. Under these assumptions,one can truncate f1(�1) and f2(�2) at necks of E1 and E2 and, after perturbation, glue togetherthe resulting surfaces with boundary to obtain a new CMC surface. The resulting CMC surfaceis nondegenerate and has asymptotics which are close to the asymptotics of the remaining endsof f1 and f2. One particular instance of the end-to-end gluing construction, doubling along anend, occurs when one glues f(�) to a copy of itself after truncating a particular end.By Corollary 2, one can use most triunduloids in end-to-end gluing, and in many other gluingconstructions. In particular, if f(�) is any triunduloid with necksizes n1; n2; n3 such that n1 +n2 + n3 < 2� and ni + nj > nk, then Corollary 2 and Theorem 11 of [R] imply one can doublethe surface f(�) along any end. This gluing construction yields examples of nondegenerate k{unduloids with k > 3 and no small necks (that is, no short closed geodesics). In addition, onecan use end-to-end gluing to create nondegenerate CMC surfaces with any �nite topology and nosmall necks.6.2 Comparison of the CMC and minimal casesWe now relate the present paper to the classi�cation results for coplanar k{unduloid (CMC) andk{noid (minimal) surfaces [GKS, GKS2, CR]. A complete description of the CMC moduli spaceinvolves not only the polygonal loop described in Section 4.2, but also the polygonal classifyingdisc, which arises from the Hopf projection of ~f(�+) to S2. Similarly, [CR] uses the orthogonalprojection of the conjugate minimal surface ~f to the symmetry plane of f , to create the classifyingpolygon for the minimal surface f .In analogy with our construction in Section 3, given a simply connected minimal surfacef : 
 ! R
3 and a Jacobi �eld u, one can construct a conjugate variation �eld � using theconjugate minimal surface ~f : 
! R

3. In this case, � satis�esd� = df � J1 + d(u�) � J0: (21)Homogeneous solutions are constant and contain no information about the classifying polygonaldisc. However, one can use � to reprove the following result of [CR]: all bounded Jacobi �elds ona genus zero, coplanar, minimal k{noid have the form u = h�; bi, for some b 2 R
3.We compare the [CR] proof to our method, both of which we sketch below. Let W be thespace of bounded Jacobi �elds on the genus zero, coplanar k{noid f : � ! R

3. As in the CMCcase, f is Alexandrov symmetric, so we decompose u 2 W into its Dirichlet and Neumann parts.With some modi�cation, our proof of Proposition 17 carries over. The salient feature one mustrecall is that any bounded Jacobi �eld u has a decomposition on each end E asu = a0u0 + a1u1 + a�1u�1 +O(r�2);where r is the Euclidean distance from the axis of the catenoid asymptote of E, u0 = O(1)arises from translation along the asymptotic axis, and u�1 = O(r�1) arise from translationsperpendicular to the asymptotic axis. In particular, if u 2 W is Dirichlet, then u = a0h�; e3i +O(r�2), and so the boundary terms in equation (16) caused by spherical truncation approachzero. Thus every bounded Dirichlet Jacobi �eld is a constant multiple of h�; e3i.The approach in [CR] is to pull back the round metric on S2 to �+ using the Gauss map. Thisaccomplishes two things: it compacti�es �+, identifying the ends as points, and it transforms theJacobi operator into �1 + 2, where �1 is the Laplacian in the round metric. The uniqueness ofthe Dirichlet Jacobi �elds (up to scaling) now follows from the fact that v = �h�; e3i is positiveon �+. 21



Cos��n and Ros transform Neumann Jacobi �elds to Dirichlet Jacobi �elds using the conjugatesurface of an associated branched minimal surface with planar ends. Their Dirichlet Jacobi �eldis the support function (inner product of the position vector and unit normal vector) of thisconjugate surface. One can also argue as in Section 5.2, using the heights hj(u) de�ned byequation (17), which still measure the vertical change in � evolving by equation (21) along 
j .Because equation (21) contains no rotation term and d� = O(r�2) on the ends, � remains verticalalong all the symmetry curves and at in�nity. Thus ~u = h�; �i is a bounded Dirichlet Jacobi �eld,and we apply the proof of Proposition 18 to conclude u = h�; bi for some b 2 R
3. This completesour comparison of the two proofs.6.3 Open questionsWe conclude by mentioning several naturally related open problems concerning Jacobi �elds onCMC surfaces and the moduli space theory of CMC surfaces. Theorems 1 and 21 give upperbounds for the dimension of the space of L2 Jacobi �elds on coplanar k{unduloids. Is this boundsharp? In particular, up to scaling, there is at most one nonzero L2 Jacobi �eld on any triunduloidsatisfying n1 + n2 + n3 = 2� or ni + nj = nk. Does this Jacobi �eld ever exist?Is it possible to extend our technique to a wider class of CMC surfaces? For instance, thereare many CMC surfaces which are not Alexandrov symmetric but do have some symmetry (e.g.tetrahedral symmetry). Can one use our methods to bound either the necksizes or the dimensionof the space V of L2 Jacobi �elds on such surfaces? Might the analysis of Section 5.2 also boundthe dimension of the space V on Alexandrov-symmetric CMC surfaces with positive genus?It would be very interesting to produce an example of a degenerate CMC surface. The questionof integrability of a Jacobi �eld is also open. According to [KMP], any tempered (sub-exponentialgrowth) Jacobi �eld on a nondegenerate CMC surface is integrable, in the sense that it is thevelocity vector �eld of a one-parameter family of CMC surfaces. It would be useful to decidewhether tempered Jacobi �elds are always integrable in this sense.References[A] A. D. Alexandrov. A characteristic property of spheres. Ann. Mat. Pura Appl. 58:303{315,1962.[CR] C. Cos��n and A. Ros. A Plateau problem at in�nity for properly immersed minimal surfaceswith �nite total curvature. Indiana Univ. Math. J. 50:847{879, 2001.[G] K. Gro�e-Brauckmann. New surfaces of constant mean curvature. Math. Z. 214:527{565,1993.[GKS0] K. Gro�e-Brauckmann, R. Kusner and J. Sullivan. Classi�cation of embedded constantmean curvature surfaces with genus zero and three ends. Bonn SFB 256, preprint 536, 1997.[GKS] K. Gro�e-Braukmann, R. Kusner and J. Sullivan Triunduloids: Embedded constant meancurvature surfaces with three ends and genus zero. J. Reine Angew. Math. 564:35{61, 2003.[GKS2] K. Gro�e-Brauckmann, R. Kusner and J. Sullivan. Coplanar constant mean curvaturesurfaces. preprint.[Ho] H. Hopf. Di�erential Geometry in the Large. Lecture Notes in Mathematics 1000. SpringerVerlag. 1983.[K] H. Karcher. The triply periodic minimal surfaces of Alan Schoen and their constant meancurvature companions. Manuscripta Math. 64:291{357, 1989.22
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