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Abstract

We prove that many complete, noncompact, constant mean curvature (CMC) surfaces
f: £ — R? are nondegenerate; that is, the Jacobi operator Ay 4 |A;|? has no L? kernel. In
fact, if ¥ has genus zero and f(X) is contained in a half-space, then generically the dimension
of the L? kernel is at most the number of non-cylindrical ends of f(¥), minus three. Our
main tool is a conjugation operation on Jacobi fields which linearizes the conjugate cousin
construction. Consequences include partial regularity for CMC moduli space, a larger class
of CMC surfaces to use in gluing constructions, and a surprising characterization of CMC
surfaces via rolling spheres.

1 Introduction

Constant mean curvature surfaces in R3 are equilibria for the area functional, subject to an
enclosed-volume constraint. The mean curvature is nonzero when the constraint is in effect, so
we can scale and orient the surfaces to make their mean curvature 1, a condition we abbreviate
by CMC. Over the past two decades a great deal of progress has been made on understanding
complete CMC surfaces and their moduli spaces, however many interesting open problems remain.
One of the most important questions concerns the possibility of decaying Jacobi fields on complete
CMC surfaces, that is, the Morse-theoretic degeneracy of these equilibria. The main result of this
paper is to rule out such Jacobi fields on a large class of complete CMC surfaces.

For a given immersed surface f : ¥ — R®, its mean curvature H; is determined by the

quasilinear elliptic equation
Aff = 2Hf vy,

where v = vy is the (mean curvature, or inner) unit normal to f and Ay is the Laplace-Beltrami
operator. The surface f(X) is CMC if Hy = 1. The oldest examples of CMC surfaces are the
sphere of radius 1 and cylinder of radius 1/2. Interpolating between these two examples are
the Delaunay unduloids, which are rotationally symmetric and periodic. A Delaunay unduloid
is determined (up to rigid motion) by its necksize n, which is the length of the smallest closed
geodesic on the surface. A necksize of n = 7 corresponds to a cylinder of radius 1/2, and as
n — 0 one obtains the singular limit of a chain of mutually tangent unit spheres. The ODE
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determining the Delaunay surfaces still has global solutions when the necksize parameter is any
negative number; in this case the resulting Delaunay nodoids are not embedded.

In the present paper we will study CMC surfaces in R which are Alezandrov-immersed. A
proper immersion f : ¥ — R? is an Alexandrov immersion if one can write ¥ = M, where M
is a three-manifold into which the mean curvature normal v points, and f extends to a proper
immersion of M into R?. In the finite topology CMC setting, M is necessarily a handlebody with
a solid cylinder attached for each end. For example, the Delaunay unduloids are Alexandrov-
immersed (in fact, embedded), but the Delaunay nodoids are not.

In the remainder of this paper, all of the CMC surfaces are assumed to be complete, Alexan-
drov immersions of finite topology, or subsets of such surfaces.

It is a theorem of Alexandrov [A] that the only compact, connected, Alexandrov-immersed,
CMC surfaces are unit spheres. Here we are primarily interested in noncompact CMC surfaces.
Korevaar, Kusner and Solomon [KKS] proved that each end of such a CMC surface is exponentially
asymptotic to a Delaunay unduloid, that two-ended CMC surfaces are unduloids, and that three-
ended CMC surfaces have a plane of reflection symmetry. In fact, all triunduloids (three-ended,
genus zero CMC surfaces) were constructed and classified by Grofie-Brauckmann, Kusner and
Sullivan [GKS], as were all coplanar k unduloids (k ended, genus zero CMC surfaces whose
asymptotic axes all lie in a plane [GKS2]). These authors define a classifying map assigning each
coplanar k—unduloid an immersed polygonal disc with & geodesic edges in S?, whose edge-lengths
are the asymptotic necksizes of the corresponding k—unduloid.

The classifying map of [GKS, GKS2] is a homeomorphism, and gives information about the
topological structure of moduli space of coplanar £ unduloids. To obtain information about the
smooth structure of moduli space, one needs to understand the linearization of the mean curvature
operator, which is the Jacobi operator

Ly=Ap+|Af],

where |Af| is the length of the second fundamental form of f. Solutions to the Jacobi equation
Lsu = 0 are called Jacobi fields, and correspond to normal variations of the CMC surface f(X)
which preserve the mean curvature to first order. More precisely, if u is a Jacobi field, then the
one-parameter family of immersions f(¢) = f + tuv has mean curvature H(t) = 1+ O(#?). Thus
one can think of Jacobi fields as tangent vectors to the moduli space of constant mean curvature
surfaces.

Definition 1 A surface f: ¥ — R3 is nondegenerate if the only solution u € L? to Lyu =0 is
the zero function.

Near a nondegenerate CMC surface f(X), a theorem of Kusner, Mazzeo and Pollack [KMP]
shows that the moduli space of CMC surfaces is a real-analytic manifold with coordinates derived
from the asymptotic data of [KKS] (that is, the axes, necksizes, and neckphases of the unduloid
asymptotes). In general the CMC moduli space is a real-analytic variety. Indeed, on a degenerate
CMC surface, there would be a nonzero L? Jacobi field u, which (by [KMP]) decays exponentially
on all ends. The presence of such a Jacobi field means there exists a one-parameter family of
surfaces f(t) with the same asymptotic data and with mean curvature 1 + O(#?), indicating
a possible singularity in the CMC moduli space. Thus, proving nondegeneracy eliminates the
potential for such singularities.

Our main theorem bounds the dimension of the space of L? Jacobi fields on a large class of
CMC surfaces.

Theorem 1 Let f : ¥ — R3 be a coplanar k unduloid. Then the space of L? Jacobi fields on f(X)
is at most (k — 2) dimensional. Moreover, if the span of the vertices of the classifying geodesic
polygon in S? is R3, then the space of L2 Jacobi fields on f(3) is at most (k — 3)-dimensional.



As a corollary, we deduce that almost all triunduloids are nondegenerate. Recall ([GKS] and our
earlier discussion) that a triunduloid uniquely determines a spherical triangle whose edge-lengths
are the asymptotic necksizes nq, na, n3. The spherical triangle inequalities imply ny +ns+n3 < 27
and n; + n; > ng. When these inequalities are strict, the vertices of the classifying triangle span
R?, and so our main theorem asserts that the space of L? Jacobi fields is {0}.

Corollary 2 Let f : ¥ — R? be a triunduloid. Then f is nondegenerate if its necksizes satisfy
the strict spherical triangle inequalities.

When a coplanar k—unduloid has cylindrical ends, Theorem 21 improves the dimension bound in
Theorem 1, and shows many of these CMC surfaces are also nondegenerate (see Section 6).

The main tool we develop is a conjugate Jacobi field construction, which converts Neumann
fields to Dirichlet fields. This conjugate variation field arises from linearizing the conjugate
cousin construction of [GKS]. Our construction is motivated by the analogous nondegeneracy
result of Cosin and Ros [CR] for coplanar minimal surfaces. However, the geometry in the
present case, and thus the proof, is quite different, with interesting consequences. For example,
we obtain new insight into the classifying map for triunduloids and, more generally, for coplanar
k unduloids (see [GKS, GKS2]). The conjugate Jacobi field construction also yields a simple,
synthetic characterization of constant mean curvature in terms of rolling a sphere along the surface
(see Section 4).

The paper is organized as follows. Notation and preliminary computations appear in Section 2.
The conjugate Jacobi field construction is in Section 3. In Section 4 we develop the rolling sphere
characterization for CMC surfaces, and the interpretation of the classifying map for coplanar
k unduloids. The proofs of Theorem 1 and Corollary 2 are in Section 5. Finally, we discuss some
extensions and applications, as well as pose some related open questions, in Section 6.

As with any mathematical problem which has been outstanding for so long, the present paper
has benefited from fruitful discussion with many people. In particular, we wish to thank John
Sullivan and Karsten Grofle-Brauckmann for reading earlier drafts of this paper, and for their
helpful suggestions.

2 Notation and conventions

On a simply connected domain of a CMC (or minimal) surface, we find it convenient to use
conformal curvature coordinates. These are coordinates (x,y) = (71, 72) on a domain ) C R2, so
that the mapping f : O — R? which parameterizes the surface satisfies

g1 = (fe, fa) = 92 = <fy=fy> =i 922, g12 = (famfy) =0,

and the (inner) unit normal v to the surface satisfies

hip = <V7fzz>:7<yz:fz>:p2’€1: has = <V=fyy>:*<’/y=fy>:f72”2> hiy = <V’fzy>:0'

In other words, choosing conformal curvature coordinates amounts to simultaneously diagonaliz-
ing the first and second fundamental forms, g and h. In these coordinates, the shape operator
A = g~ 'h is diagonal with the principal curvatures 1, k2 as its entries. Equivalently, the = and
y coordinate lines are principal curves. Notice that H = (k1 + k2)/2 is half the trace of A. In
what follows it will be useful to define k := k2 — k1, and to adopt the convention ko > k1 (away
from umbilic points). It also will be convenient to decompose the shape operator as A = B + C,
where C' = HI is the trace part and B = A — HI is trace-free. Thus, in conformal curvature
coordinates, A and B have matrices

A= { T . }’ b= { . _0“2)/2 (K2 —0/<;1)/2 } N [ _3/2 "5(/)2 } .



The existence of conformal curvature coordinates (away from umbilics) on a CMC surface
can be seen using the Hopf differential, a holomorphic quadratic differential associated with B
(see [Ho|). More precisely, suppose we have any conformal coordinates (u,v) on the surface, and
consider the complex coordinate w = u + iv. The Codazzi equation implies the complex-valued
function

¢ = (h11 — h22)/2 + ihqo

is holomorphic with respect to w if and only if H is constant. Under conformal changes of
coordinates, the holomorphic quadratic differential

P := ¢(w)dw?
is invariant. This ® is the Hopf differential of our CMC surface.

Lemma 3 If Q is simply connected and f : Q — R3 is a conformal immersion of a CMC surface
without umbilics, then there exists a conformal change of coordinates so that f is an immersion
with conformal curvature coordinates, and so that k > 0. Moreover, in any conformal curvature
coordinates, kp® is a constant.

Proof: Observe that umbilic points of f are precisely the zeroes of ® = ¢(w)dw?. Because )
is simply connected and f(f2) has no umbilics, we can pick a branch of \/¢(w). Make a conformal
change of coordinates z = z(w) = & + iy by integrating the one-form

dz := ivV® = i\/p(w)dw. (1)

Then in the z coordinates, ® = —dz?. This means hij» = 0, and so f(w(z)) is an immersion in

conformal curvature coordinates. Also, hi; — hyy = —2 implies kp? = 2, and so & > 0.
Moreover, for any conformal curvature coordinates, his = 0, so —2¢ = kp? is a real-valued

holomorphic function, and hence constant. (]

We now proceed with some preliminary computations using conformal curvature coordinates.
These are elementary, but we include them for the convenience of the reader. Using the flat
Laplacian, Ag = 9; + d;, the CMC equation is

P’Arf = Aof =2fu x f = 2070,
and the Jacobi equation reads
p*Lyu = Aou+ p*(K7 + k3)u = 0. (2)

Unlike the previous lemma, the next two do not require f to have constant mean curvature.
However, they do require that f : Q — R? is an immersion in conformal curvature coordinates.

Lemma 4 If f : Q — R? is an immersion in conformal curvature coordinates, with unit normal

v and conformal factor p = |f.| = |fy|, then we have
fox = P z*&fy‘i"{lp%/: .fyy:*p_z.z+p_y.fy+’{2p2y-
p p p p

Proof: The frame (f,, f,,v) is orthogonal, so

fox = piz<fzz;fz>fz+pi2<fzz: fy)fy+<fzz V>V: fyy = p72<fyy:fz>fz+pi2<fyy:fy)fy+<fyy: V>V-

One can then complete the proof by differentiating the equations

<fzfz> = P2 = <fyfy>: <fzfy> = <fz;V> = <fy’/> =0.



Lemma 5 If f : Q — R3 is an immersion in conformal curvature coordinates and u € C%(§),
then one can write the complex structure of the surface f(t) = f + tuv + O(t*) as

J(t) =Jo+1tJ + O(t2)

0 -1 0 wuk
‘]0_[1 0]’ Jl_{m 0}'
Thus the coordinate-free expression for Jy is the product 2uJyB, where B is the trace-free shape
operator of f.

where

Proof: In any oriented local coordinates,

J = 1 { —g12 —g22 }
Vdet(g) | 91 g2 |

Using conformal curvature coordinates at ¢ = 0, we compute the metric at ¢:

g1 = <fz(t)7fz(t)> 2(1 o ZtUI’il) + O(t2)
g = (Fy(0), (1) = p*(1 = 2tuns) + O(F)
g2 = (fa(t), £, () = O(t).

p
p

Thus
I = 1 [ 0 —p2(1 — 2tuks) } 0(#2)
P21 = 2(k1 + K2)tu p*(1 — 2tuky) 0
_ 0 —1 4 2tukrs 9
= (14 tu(ks + K2)) { 1 - tur, 0 } + O(t%),
which yields the desired expansion. ([

Lawson [L] pioneered the conjugate cousin relation between CMC surfaces and minimal sur-
faces in S®. The first order conjugate cousin construction was initiated by Karcher [K] and
developed in [G, GKS]. It uses the realization of S* C R* = H as the unit quaternions, and of
R3 = SH (the imaginary quaternions) as the Lie algebra of S3, or as the tangent space 71S3. For
imaginary quaternions p,q € R?, we can write their product as

pg=—(p,q) +p xq. (3)

In particular, orthogonal imaginary quaternions anti-commute. Thus we can also write the CMC
condition Hy =1 as

Aof = 2f.f, = 2pv. (4)

Let Q C R? be a simply connected domain. Theorem 1.1 of [GKS] shows that conjugate
cousins f: Q) — R* and f: Q) — S? satisy the first order system of partial differential equations

df = fdf o Jo, ()

where Jy is the standard complex structure on R? and the product is the quaternion product.
The integrability condition for f reduces to the CMC equation for f, and in this case the resulting
surface f(Q) C S? is minimal. Conversely, given a minimal immersion f, one can consider f as
the unknown in the system (5). Then the integrability condition for f is the minimality of f,
and the resulting surface f(€2) C R? is CMC. Moreover, the immersions f and f are uniquely
determined up to translation in R? and left translation in S®, respectively. One can also see from
equation (5) that f and f are isometric.



Lemma 6 The Jacobi operators for f and f coincide, and so we can identify Jacobi fields on
the two surfaces.

Proof: In general, the Jacobi operator for a two-sided (CMC or minimal) surface with normal
v in a manifold with Ricci curvature Ric is

L = A+ |A]? 4 Ric(y,v).
Since the Ricci curvature of R? or S% is 0 or 2, respectively, for f and its cousin f we have
Lp=Ap+ A7, Li=A7+]A5" +2.
The two surfaces are isometric, so Ay = Az. Moreover, we have (see Proposition 1.2 of [GKS])
Fo=ki—1, o =re—1.
Thus

AfP = @4 &3 = (v — 1%+ (2 — )% = w2 4+ 13 — 21+ k2) +2 = |42 — 2.

3 Existence of the conjugate cousin variation field

In this section we construct a conjugate cousin variation field € on f from a normal variation field
uv on f. The idea behind this construction is to linearize the conjugate cousin equation (5).
We begin with a CMC immersion f : Q — R? of a simply connected domain and a solution
u : 0 = R to the Jacobi equation (2). In general, uv is not the initial velocity of a one-parameter
family of CMC surfaces
f(t) = f +tuv + O(t?).

Although one can always find such a family on a sufficiently small subdomain, the families will
not coincide on the overlaps of these subdomains. However, when there does exist such a one-
parameter family of CMC surfaces, then one can define a conjugate cousin family

f(t)=f+te+ O

by integrating equation (5). In this case, the two families are related by the system
df(t) = F()df (t) o J(t), (6)
where J(t) is the complex structure on f(t). Surprisingly, if the domain 2 is simply connected,

then an initial velocity field € can be defined globally, even though this may not be possible for
the conjugate cousin family itself.

Proposition 7 Let p be a point in a simply connected domain Q. Let f and f be conjugate
cousins satisfying equation (5). Then for any Jacobi field u on Q, and any choice of initial
velocity €(p), there exists a unique global variation field € on f(Q) which is locally associated to
u in the manner described above. The field € satisfies the first order system of linear partial
differential equations B B

dé = fdf o J1 + fd(uv) o Jo + édf o Jy. (7)

Remark 1 The new variation field € need not be a normal field along f



Proof: We first sketch an abstract proof of the proposition, before giving a purely compu-
tational one. Small patches of a CMC surface are graphical and therefore strictly stable. Thus
one can always use the implicit function theorem to solve a family of Dirichlet problems for the
normal variation CMC equation, with boundary data f(t) = f+tuv. This yields a one-parameter
family of CMC patches f(t) with ¢ in a neighborhood of 0, and with initial velocity ur on such
a small patch. From these CMC patches, solve equation (6) for a family f() of minimal surface
patches in S?, uniquely determined for each ¢ once one specifies a basepoint 4(t) = f(t)(p). These
conjugate cousin surfaces have an initial velocity field €. Note, é(p) = 4'(0) can be adjusted at
will. Once we show that the fields € all satisfy the first order system (7) we deduce not only local
existence for the initial value problem (as just described), but also uniqueness, since equation (5)
reduces to a first order system of differential equations along any curve. Global existence and
uniqueness then follow because () is simply connected.

To derive our governing system (7) we expand the conjugate family equation (6) (using quater-
nionic multiplication throughout):

df +tdé + O(t?) = df(t) = f()df(t) o J(t)
= (f4te+0D))(df + td(uv) + O(t?)) o (Jo + tJ; + O(t%))

Equating the O(1) terms in this expansion gives the cousin equation (5). Equating the O(t) terms
yields equation (7), completing our sketch of the abstract proof.

A direct and instructive proof of Proposition 7 is to show that the first order system of partial
differential equations (7) satisfies the Frobenius integrability conditions, namely that the formal
mixed partial derivatives are equal. Existence and uniqueness for the initial value problem then
follows directly from the Frobenius theorem and the fact that Q is simply connected. Verifying
the mixed-partials condition amounts to showing that the formal computation of d(d¢) yields 0.
Differentiating and expanding equation (7), we get eight terms:

d(de) d(fdf o J\) + d(fd(uv) o Jo) + dé A df o Jy + ed(df o Jy) (8)
fdf o Jo Adf o Jy + fd(df o Jy) + fdf o Jo Ad(uv) o Jo + fd(d(uv) o Jy)

+]z:df o J1 A df o J[) + fd(ul/) o J[) A df ] J(] + gdf ] J(] A df o J[) + gd(df ] J(])

It is easiest to analyze equation (8) term by term. We use conformal curvature coordinates to
compute coordinate-free identities. Since umbilic points are isolated (we are not considering sub-
domains of spheres), continuity implies these identities hold everywhere. All terms are multiples
of the area form da = p*dx A dy, and two of the terms vanish:

Lemma 8

df oJy Ndf o Jy =0=df o Jy Ndf o J;.
Proof: We compute df o J; Adf o Jy:

df o i Ndf o Jy = (ukfyde +usfy) A (fyde — fody) = us(—fyfade ANdy + fi fydy A dzx)
= Uﬂ(fzfy - fzfy)dr Ndy = 0.

Here f, and f, are orthogonal, so they anti-commute. We also have

dfOJo/\dfOJl:—dfOJl/\dfOJ(]:O.

Using equation (4), the next lemma implies that two more terms sum to zero:

Lemma 9

d(df o Jy) = —Aofdx ANdy = —2p*vdx Ady = —2vda, df o Jo Ndf o Jy = 2p*vdx A dy = 2vda.



Proof: First we compute
d(df o Jo) = d(fydx — fody) = fyydy Adx — fepdx Ady = —Aofdx Ady = —2p*vdz Ady.
Similarly,

df o Jo Adf o Jo = (fydx — fody) A (fydz — fody) = — fyfodx Ady — fofydy A dz = 2p*vdx A dy.

O

The remaining terms involve the decomposition of the shape operator A into trace-free and
trace parts, B = A — C and C = HI = I, respectively. In fact, note that A = B + C is an
orthogonal decomposition in the space of symmetric linear maps, so that, by the Pythagorean

theorem,
[A]? = B> +|C]*.

Lemma 10
d(df o J,) = —2[df (BVu) + | B[*uv]da.
Proof: We compute, using Lemmas 4 and 3:

d(df o J1) = d(ukfydz + ukf,dy)
Uz Ko + UKy fo + UK foz)de A dy + [—uyk fy — uky fyy — uk fyyldy A dz
(g fo — uyfy) + u(kefo — Ky fy) + uk(faa — fyy)ldz A dy
k(e fo — uyfy) + ulkefr — £y fy) +us(2p pufo — 207 py fy — 6p°v)ldz A dy
(s o — tuyfy) + (ke fo +26p L pofe — Kyfy — ZKpflpy fy — K2p%v)|dx A dy

( )+ u(2p

( ) — K

k(g fo — uyfy 20, (kp*) fo — 220, (kp7) fy — K2 pPV))da A dy
K(uy fo — uyfy) — 6°p*uv]dz A dy = —2[df (BVu) + |B|*uv]da.

(]
The next term we have is:
Lemma 11
d(d(uv) o Jo) = 2[df (AVu) + |A|*uv]da
Proof: We compute, using the Jacobi equation:
d(d(uv) o Jo) = d((uv)ydz — (uv),)dy) = —Ag(uv)dz A dy
= —[udov + (Aou)v + 2(Vu, Vv)]|dz A dy
= —[—up’|A*v — p*|APuv + 2u,v, + 2u,v,]de A dy
= (21ugfo + 262u, f, + 2% |AlPuv)dz A dy = 2[df (AVu) + |A|*uv]da.
(]

The final two terms actually coincide:
Lemma 12
d(uv) o Jo Adf o Jy = —[df (CVu) + |C|*uv]da = df o Jo A d(uv) o Jp.

Proof: Using the conformality relations v f, = f, and vf, = —f,, we have

) TN G 0Ty = (bt )~ (o ) A e~ o)
(( K2“fy)dr - (Uz — K1 fz)dy) A (fydr - fzdy)
(*uyl/fz + koufy fa)dz Ady + (—uv fy + K1ufs fy)dy A dz
(-
(-
(

uy fy — kop*uwv)da A dy + (uy fo + K1 p°uv)dy A da
Ug [z — nyy — (k1 + HQ)p2UV)dCU A dy
—Uy fz — Uy fy — 2p%uv)dz A dy = —[df (CVu) + |C|?uv]da



since CMC implies the trace-part C = I and thus |C|? = 2. The other computation is similar. [J

Summing the results of the previous lemmas:
d(dé) = 2f[df (A — B — C)Vu) + (|A]> = | B> — |C*)uv]da = 2£[0 4+ 0] = 0.

This completes the proof of the proposition. O

4 Homogeneous solutions, rolling spheres, and the classi-
fying map via pole solutions

We continue to consider a simply connected CMC surface f : Q — R? and its conjugate cousin
surface f : Q — S3. At this point, it is useful to pull the variation field € back to R® = T 53.
Thus we define

€= fﬁlé.

By the product rule and equation (5), we have
dé = d(fe) = f(df o Jo)e + fde;
however, by equation (7),
dé = fdf o Jy + fd(uv) o Jo + édf o Jo = f(df o Jy + d(uv) o Jy + edf o Jy).
Equating these two expressions, solving for de, and applying equation (3), one obtains

de = €e(df o Jy) — (df o Jo)e+df o Jy +d(uv) o Jy =2e x df o Jg+df o J1 +d(uv)o Jy. (9)

4.1 Homogeneous solutions and rolling spheres

Equation (9) is an inhomogeneous first order differential system for e, where the inhomogeneity
df o JJ1 + d(uv) o Jy = (—=2df o Bu + d(uv)) o Jy depends linearly on the Jacobi field u. The
general solution to such a system is the superposition of a particular with the general solution
to the associated homogeneous system. Hence we first study the homogeneous system (u = 0)
associated to (9):

de = e(df o Jo) — (df o Jo)e = 2¢ x df o Jy. (10)

Notice that equation (10) implies € is perpendicular to de, so
d(|e[*) = 2(de, €) = 0,

and the solutions € to the linear system (10) have globally constant length. It follows that one can
use them to define a path-independent parallel transport along f(€2), mapping Ty, R* — Ty, R?
isometrically. To see this, let v be path from p to ¢ on the simply connected domain 2. One
recovers €(f(g)) by integrating the solution to the initial value problem for equation (10), with
initial value €9 = €(f(p)). Since this parallel transport is path independent, it defines a flat
connection on a principal SO(3)-bundle over ).

There is an interesting physical interpretation of this flat connection. Notice that if one
integrates equation (10) along any curve 7 then a solution € with unit length rotates with constant
angular speed 2, with evolving axis of rotation given by the curve conormal, df o Jo(7'(s)) = n(s).
Note that the way to roll a sphere along the surface, without twisting or slipping, so that total
rotation is minimized, is to have the sphere rotate about an axis parallel to the contact curve
conormal. (Precisely, the total rotation is the length of a path in SO(3), which we minimize
subject to the constraint that the rolling sphere is tangent to f(f2) as it traverses f(v).) If the
sphere has radius 1/2, and the contact point moves at speed 1, then the angular speed of rotation



is 2. If the surface f({2) has mean curvature 1, and if the radius 1/2 sphere is on the outside
of the surface relative to the inner normal v, then the rolling sphere exactly reproduces our flat
connection. (One must allow the sphere to immerse through the surface as necessary, for example
near points with a principal curvature less that —2; in fact, the sphere should really roll with axis
tangent to the CMC surface, but that equivalent rolling motion would be impossible to carry out
physically.) In particular, if the rolling sphere follows a (contractible) loop on the surface, it will
return with its initial orientation. This even gives a surprising property on a round sphere. The
physical realization of this mathematical fact would make an interesting demonstration.

Proposition 13 Let f : Q — R? be an immersion and consider the SO(3)-connection defined by
rolling a sphere of radius 1/2 as described above. Then f(€)) has mean curvature 1 if and only if
this connection is flat.

Proof: Since we have just shown that the CMC condition implies the flatness, it remains to
prove the reverse implication. The assumption that the rolling sphere connection is flat is exactly
the hypothesis that equation (10) is integrable for € on any simply connected domain 2, for any
choice of initial vector e(f(p)). Using equation (10), integrability implies

0 =d(de) = 2[2(e x df o Jy) x df o Jo] + 2¢€ x (d(df o Jp)).
The second term is 2e X (—Agf)dz A dy. Expand the first term and then use the Jacobi identity:

MexdfoJo) xdfody = A(ex (fyds — fudy)) x (fyd — fodly)
= 4(—(ex fy) X fo + (e X fo) X fy)dz Ndy = 4e X (fy x fy)dz A dy.

Now combine these two terms to obtain
0 =d(de) = 2e x (2f, x f, — Ao f)dz A dy.
Because € can be chosen to have any value at a point, we deduce that f solves equation (4). O

The solutions € to the homogeneous system (10) can also be expressed naturally in terms of
the quaternion geometry of S? and the conjugate surface equation for f : 2 — S3. Following the
ideas in the abstract sketch of the proof of Propsition 7, let

q(t) = 1+ ta+ O(t?)

be a smooth curve of unit quaternions, passing through 1 at time t = 0, with a € 715 = R?,
a fixed imaginary quaternion. Consider the family of left translations ¢(t)f of the mapping f,
and note that since the translation isometry is on the left, each of these surfaces satisfies the
conjugate cousin equation, d(q(t)f) = (q(t)f)df o Jy. Therefore, the velocity é = af of the family
at t = 0 solves the homogeneous (u = 0) version of equation (7), and

e:=fle=flaf (11)

solves equation (10). (One can also check by direct computation that e = f~'af solves equation
(10).) By varying « one obtains in this manner the unique solution to each initial value problem
for equation (10).

Continuing our interpretation of equation (11), we see that an equivalent way to understand
the rolling-sphere flat connection on f(€) is as the pullback from f(Q) to f(Q) of a natural double
covering S — SO(3), arising from quaternion conjugation: for each imaginary quaternion a € R?
and each g € S3, write

R,(a) :=q 'aq. (12)

We have seen that for fixed a the R*-valued field on S* defined by equation (12) pulls back to a
solution of equation (10) on f(£2). More generally, for each ¢ € S? the linear map R, is actually
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a rotation (in SO(3)), and the flat connection on f(f2) is the pullback of this rotation field from
S3.

Actually the involuted conjugation map g — R,-1 is a double covering homomorphism from
S3 to SO(3). This is easy to see directly from equation (12): the identity rotation R, = I arises
if and only if the unit ¢ commutes with all quaternions, which is equivalent to ¢ € {1, —1}. The
homomorphism property then implies that R, = Ry, if and only if R, (4,)-+ = I, that is, g1, ¢
are equal or opposite.

One can check that ¢ = R, is onto SO(3) by explicitly computing the rotation given by R,.
If we write ¢ = exp(t$), where § is a unit imaginary quaternion, then we claim that R, is a
rotation with axis 3, and that R, rotates an amount —2¢ in the positive direction about the -
axis. Quaternion algebra verifies these claims. First verify that g is fixed by R,:

Rexp(ep) (B) = exp(—tf3)Bexp(tB) = B,

because the three terms in the product commute. Next consider an imaginary quaternion «
perpendicular to 3:

Rexpp) (@) = exp(—tB)(aexp(tf))
= exp(—tB)(exp(—tB)a) = exp(-2tf)a
= cos(2t)a — sin(2t)(8 x «).

Since {a, 8 x «, 8} is positively oriented, it follows that « is rotated by an angle —2t about the
[ axis, as claimed.
We conclude from this discussion that the rotation of the rolling sphere

R:=R;: 0~ SO(3)

is nothing more than the conjugate cousin f followed by the natural covering map S® — SO(3).
Because f is harmonic, so is the map R. (One can verify this directly using (10) to compute

R AR = (R 'R,)*> + (R'R,)?,

which is the equation for a harmonic map from Q C R? to SO(3), see [U]). Furthermore, the
solution € to equation (11) is R(a).

4.2 Pole solutions to the homogeneous equation and the classifying
map for coplanar k—unduloids

The e-fields which solve the homogeneous system (10) yield a new perspective on the classifying
map [GKS, GKS2] for coplanar k-unduloids.

Let f : ¥ — R? be a coplanar k¥ unduloid with asymptotic necksizes ny,...,n;. By [KKS],
f(X2) is Alexandrov symmetric: it has a reflection plane of symmetry, which we normalize to
be the zy plane; furthermore, the closures of each half of f(X), f(X%) = f(X)N{z > 0} and
f(E7) = f(£) n{z < 0}, are graphs over a (possibly immersed) planar domain. Because ¥ has
genus zero, ¥ are topological discs. The common boundary 8f(%%) is the union of k oriented,
planar, principal curves 1, ..., v, where y; connects the end E;_; to E;, using the natural cyclic
ordering of the ends (see [GKS2]). The configuration for a triunduloid (k¥ = 3) is indicated in
Figure 1.

The evolution of solutions to equation (10) is easy to track along curves of constant conormal
n(s) = df o Jo(y'(s)), since the conormal is the rotation axis. With our convention that the inner
normal v = v'(s)n(s) = 7'(s) x n(s), and our choice of curve orientation in Figure 1, we see
that the rotation axis along each +; is the vertical vector n = —es, so that the rotation appears
counterclockwise from above, as indicated in the figure.

11
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Figure 1: Triunduloid configuration from above

Define unit-length pole solutions Pi,..., P to equation (10), so that e = P; is the unique
solution to the initial value problem on f(X%), with initial value P; = ez at some point (hence
all points) of v;. Then the cyclically ordered k-tuple of unit vector fields (Py,..., P) on f(£F)
determines an oriented polygonal loop on S?, unique up to rotation and computable at any point
of f(¥%). We can compute the pairwise S? distances between successive vertices by studying the
asymptotic behavior along the corresponding ends. Since each end converges exponentially to a
Delaunay unduloid we can find curves c¢; on end E; which are exponentially close to the planar
necks of the limit Delaunay unduloids. Exact unduloid necks with the orientation indicated in
Figure 1 have conormal pointing in the axis a; direction, so along the curves c¢; every solution e

to equation (10) satisfies

de(c}) = 2e x df (Jo(c})) ~ 2€ x a;.

This implies that (up to exponentially decaying terms, which are negligible) each unit e rotates
with angular speed 2 about the a; axis as it traverses ¢;. The total length of ¢; is n;/2, so the
total rotation angle along c; is n;. Choose positively oriented frames {a;, b;, es} for each end Ej,
as indicated in Figure 1. Then as we traverse c; the pole solution P; rotates in a great circle of
S?, clockwise in the plane spanned by b; and ez, and we deduce that the distance from P; to Pj;1
is nj. Thus the edge lengths of the polygonal loop are exactly the necksizes nq,...,ng of f(X).
This loop is the boundary of the polygonal disc used in [GKS2] to classify coplanar & unduloids.

Even in the Delaunay case (k = 2) the e-fields contain useful information.

Proposition 14 Let f(X) be a CMC Delaunay unduloid.

o If f(X) is not a cylinder then its profile curve has period © when parameterized by arclength
(see also [GKS]).

o If f(X7) is non-cylindrical then the only solution to equation (10) which satisfies {e,v) =0
along both v, v, is the zero solution. If f(X7) is cylindrical, then the pole solutions Py, Py
are opposites, and are tangential to f(X1), that is (Pj,v) = 0. Each solution € of equation
(10) satisfying (e,v) = 0 along both v1,72 is a multiple of P, = —Ps.
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Proof: Starting at the initial point of ¢;, follow the pole solutions around the contour in
Figure 2, which depicts one period of an unduloid. We see that the pole P, must return to
the vertical position after traversing the second neck c¢o. This is only possible if P, has rotated
through a total angle of 27k for some positive integer k as it travels from c¢; to ¢y along ~s.
However, P, rotates with speed 2 along -, so the length of the v, arc must be kx. In the zero
necksize limit, this arc is half a great circle on a unit sphere, so it has length 7. Thus, by the
continuity of the family of Delaunay unduloids, the period of each unduloid is .

P2

. a -

C1 C2

P4 !
P1 @ .

Figure 2: Delaunay configuration from above

For the second part of this proposition, suppose € # 0 solves equation (10) and (e,v) = 0
along ~1,7v2. If € has a nonzero horizontal component along the boundary curve ~;, then as one
traverses y; this component rotates with angular speed 2. Thus the horizontal component of €
will be perpendicular to the axis of the unduloid at points distributed with period 7/2. At such
points (e,v) # 0. Therefore € is vertical along 7, and € = ¢P; for some constant ¢. However, we
have just seen that the pole solution P; has a nonzero horizontal component after traversing the
neck ¢;. Thus the same argument shows ¢ = 0.

If f(¥) is a cylinder then P, = — P, and the solution € = ¢P; persists. Furthermore, € remains
exactly parallel to the tangent vector as it traverses the radius 1/2 circular cross-sections of the
cylinder, so it is tangent to f(XT). O

There is an interesting consequence and generalization of the fact that the period of any
Delaunay unduloid is 7. Consider a coplanar & unduloid and let L; be the length of the curve
7; obtained by truncating at the (asymptotically exact) necks ¢;_; and ¢;. By the previous
proposition, the length mod 7 of these curves has a well-defined limit as the truncations approach
infinity. We call this limit L$°.

Proposition 15 Let a; be the interior angle at the vertex P; of the spherical polygon associated
to f(X), and let §8; be the angle between the asymptotic azes aj—1 and a; (see Figure 1). Then

2L]‘?°:7r+aj+ﬂj mod 2m.

Remark 2 This result is equivalent to the relation found (Proposition 7 of [GKSO0]) for the twist
angle of the conjugate cousin minimal surface around each of its boundary Hopf circles.

Proof: One can see from equation (10) that after traversing -y;, the horizontal components of
the arc from P;_; to P; have rotated through an angle 2L;. As indicated by the angle relations
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illustrated in Figure 3 (for j = 2 on a triunduloid), this must be asymptotically equal (up to

3

multiples of 27) to ™ + a; + ;. O

Figure 3: The top view of the pole solutions just before traversing the second neck

5 The proof of the main theorem

We prove Theorem 1 in this section.
The proof uses two features of the Alexandrov symmetry satisfied by a coplanar & unduloid

f : ¥ — R3. First, the reflection symmetry lets us decompose any Jacobi field u into the sum of

an even part u4 and an odd part u_. We call an even field Neumann because its restriction to

¥ satisfies

8u+

Le(uy)=0
Fluy) I |

3 = 0:

where 7 is the (outer) conormal to X+, Similarly, we call an odd field Dirichlet since it vanishes
on OYX*. Second, the graphical nature of f(X1) implies that v := — (v, e3) is a positive Dirichlet
Jacobi field on f(XT). Using v as a comparison, we show in Section 5.1 that 0 is the only L2
Dirichlet Jacobi field. This analysis so far carries through for coplanar CMC surfaces of any
genus.

In order to analyze the Neumann Jacobi fields in Section 5.2, we use the conjugate variation
field € constructed in Section 3. This requires ¥ to be simply connected, that is, ¥ must have
genus zero.

Let V denote the space of L? Jacobi fields on f(X).

5.1 Dirichlet Jacobi fields

We give two proofs of Proposition 17 below. The first proof uses the strong maximum principle
to show that if u € L% is a Dirichlet Jacobi field it must vanish. This proof is analogous to the
standard proof that the first eigenvalue of A on a bounded domain €2 is simple. The second proof
we present is an integral version of the same maximum principle argument, which we strengthen
to deduce the result for bounded Dirichlet Jacobi fields. Both proofs compare u to the vertical
translation field v := — (v, e3) = —v3. Notice that v > 0 on X% and v = 0 on 9% T.
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To apply our maximum principle arguments comparing u to v, we need to know

v

<-0<0
an — <

(USRES
on 9X*. (We continue our convention that n is the outer conormal, which in this case is —e3
along ¥.7.) One can quickly deduce this inequality for some positive ¢, because it is true near
the ends (with § = 1) and since on any compact subset of 9X7 the Hopf boundary point lemma
gives a (noncomputable) value for §. The following lemma shows that we may take § = 1 along
all of ¥ *. We include this lemma, which is a reinterpretation of height and gradient estimates
carried out in [KKS, KK], for its geometric consequences.

Lemma 16 Let f(X) be an Alexandrov symmetric CMC surface with finite topology which is not
a sphere. The boundary Of(X1) is a union of principal curves on f(X) with principal curvature
k1 < 1. In particular, the symmetry curves do not contain umbilics, and ko = (v, e3), = —v, > 1.

Proof: Because df(X7) is the fixed point set of a reflection symmetry for f(3), it is a union
of principal curves.
By the CMC equation, we have
Ay(z) = 2vs,

where z is the restriction of the vertical coordinate to the surface f(X1). Also, because the
components of the normal v satisfy the Jacobi equation, we have

Af(l/g) = —|A‘2l/3 Z —21/37
Here we have used that |A|> > 2 and v3 < 0. Thus we have
Af(z+vs) = (2~ |A)vs >0,

and so z + v3 is a subharmonic function on ¥*. On 6%, each function vanishes, so z + v3 = 0.
By explicit computation, z + v3 < 0 on the unduloid ends of ¥*. Thus in (the interior of) X¥,

z+1v3<0

by the strong maximum principle. (Equality can only hold when f parameterizes a unit hemi-
sphere.)
By the Hopf boundary point lemma,

2 B ovs )
0<a_n(Z+V3)—*1+8—n— 1+8—n<l/,63>.

We can rearrange this to obtain the curvature perpendicular to the boundary

0
Ko = 8—77(1/, e3) = —uy > 1, (13)

and so the principal curvature along the boundary is
K1 =2— ko <1.
(]

Proposition 17 Let f(X) be an Alexandrov symmetric CMC surface (see Section 4.2) of finite
genus and with a finite number of ends. Every bounded odd (Dirichlet) Jacobi field u on f(X) is
a constant multiple of the vertical translation field v = —(v,e3) = —v3. In particular, if u € V
then u is an even (Neumann) Jacobi field (unless f(X) is a unit sphere).
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First proof: After possibly replacing v with —u, we can assume u > 0 somewhere. Now let
i > 0 be a positive parameter. We assume for this first proof that « € V, so by [KMP] u and its
derivatives decay exponentially. Combining this exponential decay with inequality (13), we see
that for p sufficiently large
Ho >

everywhere in the interior of ¥+, with equality on 0X%. We define

pt = inf{u >0 | po(p) >up),pexr}.

There is some finite ¢ which is a critical point of pu*v — u with critical value 0. The point ¢ lies
in either the interior or the boundary of ¥T. In both cases

u(q) = p*v(q), Vu(g) = p*Vo(q),

and u < p*v on ¥T. In either case, the strong maximum principle (the Hopf boundary point
lemma if ¢ € X7T) implies u = p*v. Because u € L?, this implies u* = 0 and thus u = 0. O

Second proof: We initially assume u € V), rather than the more general hypothesis that u
is a bounded Dirichlet Jacobi field. For this proof it is technically simpler to consider the entire
surface f(X). Recall that both u and v are odd with respect to reflection through the Alexandrov
plane of symmetry, and by inequality (13) u/v is uniformly bounded on the complement of the
symmetry curves, which is {v # 0}. Also, both u and v are real analytic functions which vanish
on the symmetry curves. These facts imply that u/v extends to an even, real analytic function
on the entire surface f(X). To verify analyticity on {v = 0}, use conformal curvature coordinates
in which the z axis is a symmetry curve; the fact that u and v both vanish on the x axis means
we can write

u(z,y) _ yUlz,y)  Ulz,y)
v(z,y)  yVi(zy)  Vizy)
where U and V are also real analytic and V' # 0 near the = axis by Lemma 16.

Continuing with the second proof, assume that u/v > 0 somewhere. Since u/v is nonconstant,
we can pick a regular value § > 0 for «/v with nonempty inverse image. The domain

u(z,y) = yU(z,y), v(z,y) =yV(z,y),

Qs :={u/v > 6}
is bounded (because u € L?) and has smooth boundary in . Since (u/v), < 0 pointwise along
89(57
/ vaufu@:/ U2M <0. (14)
Joq, On on lop an
However, we also have
0 = / vLyu —ulypv = / vApu — uApv (15)
95 - QE

Ou v / 5 0(u/v)
Ve —Uu— = v :
/am,s an o Jaa, on

This last equation (15) contradicts the previous inequality (14), proving u = 0.

We now explain how to extend this argument to prove that any bounded Dirichlet Jacobi
field u is a constant multiple of v. We assume u/v is nonconstant and positive somewhere, pick
a regular value § > 0, and define the nonempty set {5 as before. In this case the inequalty (14)
still holds, but we cannot immediately deduce equation (15) because 25 may be unbounded. We
overcome this difficulty by appealing to the linear decomposition lemma of [KMP], which implies
that on each end E;, we have exponential convergence

3
u =~ E Qi;V;,
i=1
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where v; are the components of the normal vector to the asymptotic unduloid. (In the case when
the end Ej; is cylidrical, one must also include Jacobi fields arising from changing the necksize,
which are even.) Because u is odd, we must have v ~ a;vs := az;vs on the end E;, and so u/v
converges smoothly to a constant —a; on the end E;. (A priori, these constants may differ from
end to end.)

Now we truncate the domain Q; by intersecting f(X) with a sequence of balls, defining

Qsv =={p € Qs : [f(p)| < N} =5 N Bn(0),

where N =1,2,3,.... Then equation (15) becomes

0= / ulyv —vlyu = / uvy — Vg, + / Uy — Vy. (16)
P Qg,N JOQsNBn QsNOBN

But as soon as N is large enough so that 925N By has positive length, inequality (14) implies the
first term is negative, and in fact it is decreasing in N; also, the second terms converge uniformly
to zero by our previous discussion of the asymptotics. This contradiction shows u is a constant
multiple of v. (]

5.2 Neumann Jacobi fields

Given a Jacobi field u on the coplanar k unduloid f(X), the conjugate field é defined by equa-
tion (7) yields a conjugate Jacobi field @ := (¢,7) on the surfaces f(X*) and f(¥*). By the
correspondence € = fe relating solutions of equations (7) and (9), we see

i =(,0) = (fe, fv) = (e, v).

Our plan is to convert even (Neumann) Jacobi fields u € V into L? Dirichlet Jacobi fields
i, use Proposition 17 to deduce @ = 0, and use this to show u = 0. In order to carry out this
procedure, u must satisfy a finite number of linear conditions, which is why Theorem 1 only
bounds the dimension of V, rather than asserting V = {0}.

Since each u € V decays exponentially on all ends, the corresponding conjugate fields e are
asymptotic to solutions of the homogeneous equation (10). By [GKS2], f(X) has at least two
non-cylindrical ends, one of which we label Ej, (see Figure 1). From Proposition 14 in Section 4.2,
a necessary condition for attaining zero Dirichlet data on the end Fj, is that e must converge to 0,
and so we specify a unique conjugate field € associated to u by setting e = 0 on this non-cylindrical
end Ej. Starting at Ej, we compute how e changes along the contours v;, and along the ends
E;.

By Lemma 16, the y; are principal curves, with curvature x; < 1 and constant conormal —es.
We have seen by Proposition 17 that u € V is even. Thus we have

de(v;) = 2exdf o Jo(yj) +df o Ji(v)) +d(uv) o Jo(7v})
= —2exe3+u(ke — K1) fy +upv +uyy,
= —2exesz+u(ki — K+ Ko)eg +uyv

= —2¢ X e3+ ukies

along v;. The geometric interpretation of this equation is that the horizontal part of € rotates
about es, counterclockwise with speed 2, and the vertical part of € changes at a rate of uxk;. Now
set

() = / () = / urads (17)

where s is the arc-length parameter along ;. These heights h;j(u) measure the change in the
vertical components of € as one traverses ;. They play a key role in our analysis.
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The integration defining the heights h;(u) associates a real number to each symmetry curve
7vj. We encode this by defining the linear transformation 7' : V — R* by

T(u) = (ha(u), ..., hg(u)). (18)

Proposition 18 Let f(X) be a coplanar k unduloid, and let V be the space of L* Jacobi fields
on f(X). Then the linear transformation T : V — R* defined by expression (18) is injective. In
particular, the dimension of V is at most k.

Proof: We prove this proposition in two steps. First, show that T'(u) = 0 implies the
conjugate Jacobi field @, which is uniquely defined by our choice that € = 0 on the non-cylindrical
end Ej, must be identically zero. The second step is to show that whenever @ = 0 then u = 0.

As we traverse 7; from the end Ej to the end F; only the vertical part of € changes, and the
total change in this component is hj(u) = 0. Thus €(p) converges exponentially to 0 on 7, as
p approaches infinity on the end F;. Since e also converges to a homogeneous solution on FEj,
we see that e converges to 0 on the entire end FE;. Repeat this argument successively, traversing
v; from E;_; to Ej, using the hypothesis that each hj(u) = 0. We deduce that e converges
to 0 exponentially along each end and that it remains vertical along each ~;. Thus @ = (e, v)
decays exponentially to zero along each end and is a Dirichlet field, because € is vertical and v is
horizontal along each 7;. Therefore, after extending @ to all of f(X) by odd reflection, Proposition
17 implies u = 0.

We proceed to the second step, which we set aside as a lemma.

Lemma 19 If the conjugate Jacobi field u is identically zero, then so is u.

Proof: We assume @ = (¢,7) = 0, that is, the vector field € is tangent to f(Xt). We
pull € back to ¥* and denote its flow by X:(#). For small values of ¢, this is a diffeomorphism
X:(t) : ¥t — UF, because € is parallel to the conormal, and so ¢ is tangent along df(XF). Now
define the one-parameter family of immersions

f(t) = foX:(t): 2+ - S°.

This provides a family of reparameterizations of the minimal surface f(X1) c S3.
We produce a family of CMC surfaces f(t) in R® by taking the conjugate cousin of this family
of reparameterization of f(X1). Rearrange the conjugate family equation (6) to read

df(t) = —f(t) "' df(t) o J(2). (19)
Using the inhomogeneous equation (7) for € and f(t) = f+té+O(t?) = f(1+te+ O(t?)), expand
equation (19) in powers of . One recovers d(uv) as the O(t) term in the expansion of df (t):
df(t) = —(f(1+1te) '[(df)(1 +te) + tfde] o (Jo + t.Jy) + O(t?)
= —(1—te)f'[df o Jo +t((df o Jo)e + df o Jy + fde o Jo)] + O(t?)
= —f7ldfodo+tlefdf o Jo— [T (df o Jo)e — [Tdf oy — deo Jo] + O(F)
= df +t[—edf +dfe —df o JygoJ, — (—edf +dfe — d(uv) + df o Jy o Jp)] + O(t?)
= df + td(uv) + O(t?).
We used the facts that Jg = —T and Jyo.J; = —J; o Jy in the last steps.
Integrate the one-form df(t) = df + td(uv) + O(#*) to recover the immersion f(t). In this

integration we are free to choose the value of f(t) at a basepoint p € 7, and choose f(t)(p) =
f(p) + tuv(p). Then for any compact set K C 7 and q € K, we have

f(#)(a)

ﬂm+wwm+/2Wﬂ

- ﬂm+mwm+/du+mW+ow»=ﬂw+mww+ow»

P
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However, this one-parameter family f(t) is a conjugate cousin family for the fixed surface f(X1),
so by Theorem 1.1 of [GKS], the surfaces f(¢) can only vary by a family of translations. Taking

the derivative at ¢ = 0, this implies « is the normal part of an R?® translation, which implies
u & L2 Thus @ = 0 implies v = 0, completing the proof that T is injective. O

Proposition 20 Suppose f(X) is a coplanar k unduloid. Let uw € V, and let Py,..., Py be the
pole solutions to the homogeneous equation (10) associated to the symmetry curves yi,...,Vg.
Then for the constants hj := h;(u), we have the linear relation

k
> hiP;
j=1

0 (20)

on f(X7T). Thus, if the vertices of the classifying polygon for f(X) span an l-dimensional subspace
of R3, then V is at most (k — l)-dimensional.

Proof: Let € be the conjugate variation field which solves equation (9) for the given u € V,
with € = 0 on the end Ej. Traversing ; from FEj to E;, as in the previous proposition, we
conclude that e converges exponentially to the homogeneous solution hy P; on the end E;. Thus
€1 = € — hy Py solves equation (9) with inital value 0 on E;, and evolves along v, with a vertical
change of hy. Thus €; converges to the homogeneous solution h, P> along the end Es, so € converges
to hi Py +ho P> along this end. Continuing this reasoning and traversing the remaining v; in order,
one returns to the end Ej, with € converging to the homogeneous solution hy P, + --- + hy Pg.
Since € is well-defined, this sum must be the initial asymptotic homogeneous solution 0. This
shows the linear dependence (20).

Evaluating the pole solutions at a point ¢ € X yields vertices for a representative classifying
polygon for f(X). The linear relation (20) implies that (hq, ..., ki) solves a homogeneous system
of rank | = dimspan{P;(q),..., Pr(q¢)} < 3. Since the solution space of this system is (k — [)—-
dimensional, and the linear transformation T defined by equation (18) is injective, we conclude
that dimV < k — 1. O

Using the fact that the vertices of the classifying polygon of a coplanar £ unduloid span a
two- or three-dimensional subspace of R? [GKS2], this completes the proof of Theorem 1, and, as
explained in the introduction, Corollary 2.

6 Extensions, applications and open questions

One can sharpen the proofs of Theorem 1 and Corollary 2 to show that triunduloids with a
cylindrical end are also nondegenerate. The theorem below includes these triunduloids as a
special case, and applies to a more general class of k—unduloids. By Theorem 1.5 of [GKS2], a
coplanar k—unduloid has at least two non-cylindrical ends.

Theorem 21 Let f(X) be a coplanar k—unduloid. If f(X) has d non-cylindrical ends and the
vertices of the classifying polygon span an |-dimensional subspace of R?, then the space V of L?
Jacobi fields has dimension at most d — 1. In particular, if f(X) has ezactly two non-cylindrical
ends, or three non-cylindrical ends and classifying polygon with vertices spanning R>, then it is
nondegenerate.

Proof: By Proposition 17, any u € V is even, so we proceed as in Section 5.2. The key
idea in the proof is the observation (see Proposition 14) that if E; is a cylindrical end, then the
pole solutions P; and Pj;; are opposites, and are asymptotically tangent along E;. In other
words, given v € V and a corresponding conjugate variation field e, if € is vertical along ~;
then it is asymptotically tangent on E; and continues to be vertical on v;4;. Therefore, the
conjugate Jacobi field @ = (e,v) vanishes on «; U ;41 and decays along E;. More generally, if
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(Ey,...,Es_1) is a string of adjacent cylindrical ends and e is vertical on ~,, then it is vertical on
all the symmetry curves ~, U --- U 7, implying @ vanishes on these symmetry curves and decays
on the ends E,,..., E, ;.

We now develop the combinatorial tools needed to complete the proof. The distribution of non-
cylindrical ends on f(X) leads to a partitioning of the cyclically ordered set of symmetry curves
(71, .- -,7) and their corresponding pole solutions (P, ..., P;) into substrings. Our substrings

3 3

have the form C := (v, Vr+1,---,7s), where the ends E,, E.;1,..., Es_1 are cylindrical while
E,._1 and E; are not. In other words, 7, U ---U s connects the non-cylindrical end E,_; to the
next non-cylindrical end Ej, through adjacent cylindrical ends. Notice that the singleton C' = (v;)
is a substring if neither E;_; nor E; are cylindrical ends. Because each substring corresponds to
a path joining one non-cylindrical end to the next non-cylindrical end in the cyclic ordering, the
total number of elements of the partition equals the number of non-cylindrical ends d on f(X).

If C = (y,...,7s) is a substring then, by the previous discussion, the corresponding pole
solutions (P,, ..., Ps) are all parallel; in fact, for r < j < s, we have P; = (=1)/""P. = (—1)* 7 P,.
Moreover, if & decays on E,_; and if

S

D hi(w)Py = (3o(=1)"7hy(w) Py =0,

j=r

then @ vanishes on 7, U741 U+ U~ and @ also decays on the ends E, ..., E;. We now define
the linear transformation 7': V — R? by

S1 Sd
T(u) := (ha(u),.. ha(w) = (Y (=D hju),. .., Y (=1)* T h(w)),
Jj=r Jj=ra
where the m!" string of the cyclic partition is (7,,,,...,7s, ). If T(u) = 0, then each alternating

sum  fyy, () is zero, and so @ is an L* Dirichlet Jacobi field. Lemma 19 then implies u = 0.
Therefore, T is injective.
The linear relation (20) now reads

k d Sm d
0= hnPu=> (> (1) 7hj)Ps, = > hmPs,
m=1 m=1 j=r, m=1

As in the proof of Lemma 19, this linear system has rank [ = dim{span{Ps,,..., Ps,} < 3, so the

solution space is (d —1) dimensional. Since T :V — R? is injective, we deduce that dimV < d—1.
O

Using Proposition 21, we can show:
Corollary 22 The set of nondegenerate triunduloids is connected.

Proof: The triunduloids satisfying the strict spherical triangle inequalities comprise a disjoint
union of two open three-balls, corresponding to small or large classifying triangles. The moduli
space of triunduloids is the union of the closure of these balls. Thus, to show connectedness,
it suffices to find a nondegenerate triunduloid satisfying the weak spherical triangle inequalities,
which lies in the closure of both these balls. Any triunduloid with a cylindrical end is such a
surface. O

6.1 Regularity of moduli space and applications to gluing

We have already noted in the introduction that a basic application of nondegeneracy is showing
that the CMC moduli space is a smooth manifold.
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Another application is to gluing constructions, where one often needs to assume that the
summands are nondegenerate. One particular gluing construction is end-to-end gluing (Theorem
1 of [R]), which proceeds as follows. Suppose f1(X1) and f2(X,) are two nondegenerate CMC
surfaces with ends E; C f;(X;), such that E; and E, are asymptotic to congruent Delaunay
unduloids which is not a cylinder. We must also assume that f; belongs to a one-parameter
family of CMC surfaces which changes the necksize of E to first order. Under these assumptions,
one can truncate f;(X1) and fo(X2) at necks of E; and E, and, after perturbation, glue together
the resulting surfaces with boundary to obtain a new CMC surface. The resulting CMC surface
is nondegenerate and has asymptotics which are close to the asymptotics of the remaining ends
of fi and f5. One particular instance of the end-to-end gluing construction, doubling along an
end, occurs when one glues f(X) to a copy of itself after truncating a particular end.

By Corollary 2, one can use most triunduloids in end-to-end gluing, and in many other gluing
constructions. In particular, if f(X) is any triunduloid with necksizes n1,n2,n3 such that n, +
ny +ng < 27 and n; + n; > ny, then Corollary 2 and Theorem 11 of [R] imply one can double
the surface f(X) along any end. This gluing construction yields examples of nondegenerate k—
unduloids with & > 3 and no small necks (that is, no short closed geodesics). In addition, one
can use end-to-end gluing to create nondegenerate CMC surfaces with any finite topology and no
small necks.

6.2 Comparison of the CMC and minimal cases

We now relate the present paper to the classification results for coplanar k£ unduloid (CMC) and
k—noid (minimal) surfaces [GKS, GKS2, CR]. A complete description of the CMC moduli space
involves not only the polygonal loop described in Section 4.2, but also the polygonal classifying
disc, which arises from the Hopf projection of f(X%) to S2. Similarly, [CR] uses the orthogonal
projection of the conjugate minimal surface f to the symmetry plane of f, to create the classifying
polygon for the minimal surface f.

In analogy with our construction in Section 3, given a simply connected minimal surface
f : Q — R? and a Jacobi field u, one can construct a conjugate variation field e using the
conjugate minimal surface f : © — R3. In this case, e satisfies

de = df o J; + d(uv) o Jp. (21)

Homogeneous solutions are constant and contain no information about the classifying polygonal
disc. However, one can use € to reprove the following result of [CR]: all bounded Jacobi fields on
a genus zero, coplanar, minimal k—noid have the form u = (v, b, for some b € R3.

We compare the [CR] proof to our method, both of which we sketch below. Let W be the
space of bounded Jacobi fields on the genus zero, coplanar k-noid f : ¥ — R3. As in the CMC
case, f is Alexandrov symmetric, so we decompose u € Y into its Dirichlet and Neumann parts.
With some modification, our proof of Proposition 17 carries over. The salient feature one must
recall is that any bounded Jacobi field « has a decomposition on each end E as

u = agug + a1uy +a_ju_y + O(r—?),

where r is the Euclidean distance from the axis of the catenoid asymptote of E, ug = O(1)
arises from translation along the asymptotic axis, and u4; = O(r~!) arise from translations
perpendicular to the asymptotic axis. In particular, if w € W is Dirichlet, then u = ag(v, e3) +
O(r—2), and so the boundary terms in equation (16) caused by spherical truncation approach
zero. Thus every bounded Dirichlet Jacobi field is a constant multiple of (v, e3).

The approach in [CR] is to pull back the round metric on S? to ¥ using the Gauss map. This
accomplishes two things: it compactifies 1, identifying the ends as points, and it transforms the
Jacobi operator into A7 + 2, where A; is the Laplacian in the round metric. The uniqueness of
the Dirichlet Jacobi fields (up to scaling) now follows from the fact that v = —(v, e3) is positive
on XF.
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Cosin and Ros transform Neumann Jacobi fields to Dirichlet Jacobi fields using the conjugate
surface of an associated branched minimal surface with planar ends. Their Dirichlet Jacobi field
is the support function (inner product of the position vector and unit normal vector) of this
conjugate surface. One can also argue as in Section 5.2, using the heights h;(u) defined by
equation (17), which still measure the vertical change in € evolving by equation (21) along ;.
Because equation (21) contains no rotation term and de = O(r~2) on the ends, € remains vertical
along all the symmetry curves and at infinity. Thus @ = (¢, v) is a bounded Dirichlet Jacobi field,
and we apply the proof of Proposition 18 to conclude u = (v, b) for some b € R3. This completes
our comparison of the two proofs.

6.3 Open questions

We conclude by mentioning several naturally related open problems concerning Jacobi fields on
CMC surfaces and the moduli space theory of CMC surfaces. Theorems 1 and 21 give upper
bounds for the dimension of the space of L? Jacobi fields on coplanar ¥ unduloids. Is this bound
sharp? In particular, up to scaling, there is at most one nonzero L? Jacobi field on any triunduloid
satisfying n1 4+ ny + ng = 27 or n; + n; = ny. Does this Jacobi field ever exist?

Is it possible to extend our technique to a wider class of CMC surfaces? For instance, there
are many CMC surfaces which are not Alexandrov symmetric but do have some symmetry (e.g.
tetrahedral symmetry). Can one use our methods to bound either the necksizes or the dimension
of the space V of L? Jacobi fields on such surfaces? Might the analysis of Section 5.2 also bound
the dimension of the space V on Alexandrov-symmetric CMC surfaces with positive genus?

It would be very interesting to produce an example of a degenerate CMC surface. The question
of integrability of a Jacobi field is also open. According to [KMP], any tempered (sub-exponential
growth) Jacobi field on a nondegenerate CMC surface is integrable, in the sense that it is the
velocity vector field of a one-parameter family of CMC surfaces. It would be useful to decide
whether tempered Jacobi fields are always integrable in this sense.
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