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Abstract. We extend a theorem of Masur and Wolf which says
that given a hyperbolic surface S, every isometry of the Teichmüller
space for S with the Weil–Petersson metric is induced by an ele-
ment of the mapping class group for S. Our argument handles the
previously untreated cases of the four-holed sphere, the one-holed
torus, and the two-holed torus.

1. Introduction

The purpose of this paper is to fill in several gaps in the understanding
of Weil–Petersson isometries. Throughout, S is an orientable hyper-
bolic surface, and Sg,n denotes a surface of genus g with n punctures.
The extended mapping class group for S is:

Mod(S) = π0(Homeo±(S))

Let T(S) denote the Teichmüller space of S with the Weil–Petersson
metric. Masur and Wolf proved that for S /∈ {S1,1, S0,4, S1,2}, every
isometry of T(S) is induced by an element of Mod(S) [15]. One of the
main ingredients is that for exactly these surfaces, every automorphism
of the complex of curves for S is induced by Mod(S); this is a theorem
of Ivanov [9], with special cases due to Korkmaz and Luo [11] [12]. See
Section 2 for definitions.
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We are able to extend the result of Masur and Wolf to all possible
surfaces by viewing an isometry I of T(S) as giving an automorphism
Ī⋆ of the pants graph for S. By a theorem of the second author, Ī⋆
is necessarily induced by a mapping class f . Then, as observed by
Wolpert, one can apply a theorem of the first author to show that f
induces I. Thus, we have:

Main Theorem. The natural map η : Mod(S) → Isom(T(S)) is sur-

jective. Further, ker(η) ∼= Z2 for S ∈ {S1,1, S1,2, S2,0}, ker(η) ∼= Z2⊕Z2

for S = S0,4, ker(η) = Mod(S) for S = S0,3 and ker(η) = 1 otherwise.

It follows from the definition of the Weil–Petersson metric that Mod(S)
acts by isometries; the content is that all isometries arise in this way.

The application of curve complexes to the study of isometries of Te-
ichmüller space first appears in Ivanov’s proof of Royden’s Theorem,
which is the analogue of our Main Theorem for the Teichmüller metric
[10] [16].
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2. Preliminaries

We briefly recall the basic definitions and concepts.

Complex of curves. The complex of curves C(S) for S, defined
by Harvey [5], is the abstract simplicial flag complex with vertices
corresponding to isotopy classes of simple closed curves in S, and edges
between vertices that can be realized disjointly in S.

For our purposes, this complex has an undesirable property when S
is S1,1, S0,4, or S1,2: there are automorphisms of C(S) which are not
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induced by elements of Mod(S). For S ∈ {S1,1, S0,4}, this is because,
as defined, C(S) is a countable discrete set.

The problem with S1,2 is more subtle. Luo noticed that if ι is the hyper-
elliptic involution of S1,2, then the projection π : S1,2 → S1,2/ι gives a
bijection between the vertices of C(S1,2) and C(S1,2/ι) ∼= C(S0,5). Since
Mod(S0,5) acts transitively on the vertices of C(S0,5) (every curve has
two punctures on one side and three on the other), it follows that some
elements of Aut(C(S1,2)) fail to preserve the set of vertices correspond-
ing to separating curves. Such automorphisms clearly cannot arise from
mapping classes (see [12]).

Pants graph. The pants graph P(S) for S, introduced by Hatcher and
Thurston [7] [6], is the simplicial complex with vertices corresponding to
pants decompositions of S (i.e. maximal simplices of C(S)), and edges
connecting pants decompositions which differ by an elementary move,
by which we mean that the two pants decompositions differ by only one
curve, and the differing curves have the smallest possible intersection.
The minimal intersection number is 1 or 2, depending on whether the
curve being replaced lies in a single pair of pants or is the boundary
between two pairs of pants; see Figure 1.

Figure 1. Elementary moves.

We will apply the following theorem of the second author [13]:

Theorem 2.1. The natural map θ : Mod(S) → Aut(P(S)) is surjec-

tive. Further, ker(θ) ∼= Z2 for S ∈ {S1,1, S1,2, S2,0}, ker(θ) ∼= Z2 ⊕ Z2

for S = S0,4, ker(θ) = Mod(S) for S = S0,3, and ker(θ) = 1 otherwise.

We note that the proof of Theorem 2.1 is based on the aforementioned
theorem of Ivanov, which gives an analogous statement for C(S).

Teichmüller space. A point in the Teichmüller space T(S) of S is
given by a pair (X, f), where X is a finite-area hyperbolic surface X
and f : S → X is a homeomorphism. Two points (X, f) and (Y, g) are
equivalent if g ◦ f−1 is isotopic to an isometry.

We note that T(S0,3) is a single point, and in this case our main result
is trivial.
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Weil–Petersson metric. A point in T(S) is naturally a Riemann
surface via its uniformization as a quotient of H2 by a Fuchsian group.
In this way, the cotangent space T ⋆

X(T(S)) at a point X is identified
with the space of holomorphic quadratic differentials on X (holomor-
phic forms of type φ(z) dz2), which has the L2 inner product defined
by:

〈φ, ψ〉 =

∫

X

φψ̄

ρ2

Here, ρ(z)|dz| is the hyperbolic metric onX. Then, the Weil–Petersson

metric is defined by the pairing

〈µ, φ〉 =

∫

X

µφ

where φ ∈ T ⋆
X(T(S)) and µ is an element of the tangent space TX(T(S)),

which is identified with the space of harmonic Beltrami differentials on
X (forms of type µ(z) dz/dz; see e.g. [8]).

Chu and Wolpert showed that the Weil–Petersson metric is not com-
plete [4] [18].

Augmented Teichmüller space. Masur gave an interpretation of
points in the completion of T(S) as marked noded Riemann surfaces

[14]. A noded Riemann surface is a complex space with at most iso-
lated singularities, called nodes, each possessing a neighborhood bi-
holomorphic to a neighborhood of (0, 0) in the curve {zw = 0} in C2.
Removing the nodes of a noded Riemann surface W yields a (possibly
disconnected) Riemann surface whose components we call the pieces of
W .

Given a simplex σ ∈ C(S), a marked noded Riemann surface (W, f)
with nodes at σ is a noded Riemann surface W equipped with a con-
tinuous mapping

f : S → W

so that f |S\σ is a homeomorphism to the pieces of W . Two marked
noded Riemann surfaces (W, f) and (Z, g) are equivalent if there is a
continuous marking-preserving map φ : W → Z which preserves nodes
and is biholomorphic on the pieces.

To describe a neighborhood of a point (W, f) in T(S), we give coor-
dinates adapted to the simplex σ. Given a maximal simplex τ with
σ ⊂ τ , there are Fenchel-Nielsen coordinates

{(ℓ, θ)α} ∈ (R>0 × R)|τ |
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for T(S) specifying length and twist parameters along each closed ge-
odesic α determined by the vertices of τ (see, e.g. [8]). Then the
extended Fenchel-Nielsen coordinates for τ are obtained by allowing
lengths to range in R≥0 and stipulating that for any twist parameters
θ and θ′ we have (0, θ)α ∼ (0, θ′)α.

The extended Fenchel-Nielsen coordinates for (W, f), then, are given by
setting the length parameters corresponding to the curves of σ to 0, and
setting the other length and twist parameters equal to the correspond-
ing Fenchel-Nielsen coordinates for the piece in which the geodesic lies.
Then a neighborhood of (W, f) is given by all surfaces in T(S) with
extended Fenchel-Nielsen coordinates close to those of (W, f). We will
in practice refer to (W, f) as a noded surface with curves in σ pinched.

Stratification. We think of T(S) as a stratified space, with Fk denot-
ing the stratum consisting of surfaces with k curves pinched. Also, F
denotes T(S)−T(S). Points in the stratum corresponding to maximally
noded surfaces are naturally associated with the pants decompositions
that are pinched. These points are isolated from each other, since there
is a unique hyperbolic structure on S0,3.

As Teichmüller spaces themselves, each connected component O of
Fk comes equipped with its own metric dO. On the other hand, O
inherits a metric dT(S)|O as the completion of T(S). Masur proved that
the metric tensor on T(S) extends continuously to the intrinsic Weil–
Petersson metric tensor on strata in F [14], and Wolpert proved that
length minimizing paths in Fk do not enter T(S) [19], and together
these facts give the following (see [15, Lem. 1.3.1]):

Theorem 2.2. On any connected component O of Fk, the metrics dO
and dT(S)|O are the same.

Negative curvature. By work of Tromba and Wolpert the Weil–
Petersson metric has negative sectional curvatures and is geodesically
convex [17] [19]. It then follows from general principles that T(S) is a
CAT(0) metric space (see [1]).

Visual sphere. Each point X in T(S) has a visual sphere VX(S),
which is the unit tangent space at X. Due to the non-completeness of
the Weil–Petersson metric, certain directions in the visual sphere cor-
respond to finite-length geodesics emanating from X that leave every
compact subset of T(S). These finite rays terminate at noded Riemann
surfaces in F .
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As a consequence of the CAT(0) property for T(S), the first author
proved the following density theorem [2].

Theorem 2.3. For any S and any X ∈ T(S), the finite rays are dense

in the visual sphere VX(S).

The idea is that every point X of T(S) is within a uniformly bounded
distance of a maximally noded surface N(X) (see [3]). Thus, given a
sequence of points Xn diverging from X along an infinite ray from X,
a sequence points of VX(S) corresponding to the direction determined
by the geodesic joining X to N(Xn) converge to the given infinite ray.
Wolpert proved that Theorem 2.3 has the following corollary [20], which
immediately implies that a Weil–Petersson isometry is determined by
its action on the maximally noded surfaces.

Corollary 2.4. T(S) is the closed convex hull of its maximally noded

surfaces.

Wolpert has in fact already used this corollary to give a simplification
of the proof of Masur and Wolf (but not our extension) [20].

3. Edge strata

In this section, we study the stratum of T(S) where all but one of the
curves of a pants decomposition are pinched; in Lemma 4.2, this stra-
tum is where we will be able to see the edges of P(S). By Theorem 2.2,
each connected component of this stratum is isometric to T(R) for R
equal to either S1,1 or S0,4.

In both cases, we have that T(R) is topologically H2, and Mod(R)/Z ∼=
PGL2(Z), where Z is the center of Mod(R) (Z = Z2 if R = S1,1 and
Z = Z2⊕Z2 if R = S0,4). The action of Mod(R) on T(R) then coincides
with the usual action of PGL2(Z) on H2 by Möbius transformations and
complex conjugation.

Also, F is the set of rational points of ∂H2, and T(R) has the horoball
topology. That F is discrete agrees with the fact that any noded sur-
face is maximally noded (pants decompositions consist of exactly one
curve). In this way, curves in R are naturally identified with the ra-
tional numbers, and two curves p/q and r/s (in reduced form) are
connected by an edge in P(R) exactly when |ps− qr| = 1.
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3.1. Farey graph. Let G denote the usual embedding of the Farey

graph in H2: in the upper half-plane model of H2, its vertices are at
rational points (including ∞), and its edges are hyperbolic geodesics
connecting (reduced) rational numbers p/q and r/s whenever |ps −
qr| = 1 (see Figure 2). We will now see that each edge of G is a
Weil–Petersson geodesic.

The imaginary axis is a geodesic since it is the fixed set of the isometry
given by a mapping class corresponding to:

(

1 0
0 −1

)

which acts on H2 (in the upper half-plane model) by z 7→ −z̄. The
PGL2(Z)-orbit of this geodesic is G. Thus, G gives a geodesic between
any noded surfaces whose corresponding pants decompositions have
distance 1 in P(R).

Figure 2. The Farey graph G in the upper half-plane.

3.2. Weil–Petersson vs. pants distance. We will now show that
the Weil–Petersson metric encodes adjacency in the pants graph P(R).

In the following lemma, we denote a (geodesic) triangle, and any of its
edges, by a set of vertices. A triangle is called a tripod if any edge is
contained in the union of the other two edges.

Lemma 3.1. Let (X, d) be a CAT(0) metric space, and let ABC be

an equilateral triangle in X which is not a tripod, and which has side

length L. If D is any point on BC, then d(A,D) > L/2.
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Proof. Assume that, say, d(B,D) ≤ L/2. The triangle inequality im-
plies that d(A,D) ≥ L/2 and that if d(A,D) = L/2, then d(B,D) =
d(C,D) = L/2. In the latter case, the uniqueness of geodesics in
CAT(0) spaces implies that ADC = AC and ADB = AB; thus, ABC
is a tripod.

˜

For the next lemma, L is the Weil–Petersson length of edges of G,
dP denotes combinatorial distance in P(R), and dWP denotes Weil–
Petersson distance.

Lemma 3.2. If P and P ′ are pants decompositions with dP(P, P ′) > 1,
then the corresponding noded surfaces W and W ′ have dWP(W,W ′) >
L.

Proof. Let g be the geodesic from W to W ′. Since dP(P, P ′) > 1, g
passes through at least two triangles of G, and this gives a natural
division of g into segments. By Lemma 3.1, the segments containing
W and W ′ each have length greater than L/2, so dWP(W,W ′) > L.

˜

Remark. L has different values, say LS1,1
and LS0,4

, depending on
the surface; in fact, LS0,4

= 2LS1,1
and more generally the metrics for

T(S0,4) and T(S1,1) differ by the same factor. To see this, note that for
R either S1,1 or S0,4, the quotient of R by Z(Mod(R)) is a genus zero
orbifold with one cusp and three cone points of order 2. Since π : R →
R/Z(Mod(R)) is a local isometry, and π gives a canonical bijection
between T(R) and T(R/Z(Mod(R))), it follows from the definition
that the metric on T(R) is the metric on T(R/Z(R)) multiplied by the
degree of π. This fact, however, is not needed for the proof.

4. Proof of Main Theorem

Let S be any surface, other than S0,3, with negative Euler characteris-
tic, let I ∈ Isom(T(S)), and let Ī be the natural extension of I to the

completion T(S). We will use F≥k to denote
⋃

i≥k

F i.
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The following lemma is also proven by Masur and Wolf [15, Lem. 1.3.4,
Lem. 1.3.5]; however, the proof given here is more elementary, relying
only on topology and not at all on curvature.

Lemma 4.1. Ī(F) ⊂ F , I and Ī are surjective, and Ī preserves strata.

Proof. For the first statement, suppose that Ī(W ) ∈ T(S). Then Ī(W )

has a compact neighborhood K. Let K ′ = K ∩ Ī(T(S)). We have that

K ′ is compact, since Ī(T(S)) is closed (it is an isometric embedding of a
complete space). But this implies that W has a compact neighborhood
(namely Ī−1(K ′)), and so W ∈ T(S).

For surjectivity of I, it suffices to show that I is proper (any proper
embedding of a manifold without boundary into itself is surjective).

Indeed, letK be a compact subset of T(S). As above, K ′ = K∩Ī(T(S))
is compact. Since Ī(F) ⊂ F , K ′ = K ∩ I(T(S)). Hence, I−1(K ′) is
compact. Thus, I is surjective, and it immediately follows that Ī is
surjective.

For the last statement, we inductively show that W ∈ Fk if and only if
Ī(W ) ∈ Fk. The base case is F0 = T(S): by definition, Ī(W ) ∈ T(S)
whenever W ∈ T(S), and we have just shown that Ī(F) ⊂ F .

Now suppose Ī preserves Fk−1. Then Ī restricts to an isometry of F≥k,
which is a homeomorphism since Ī is surjective. The points of Fk are
characterized by having compact neighborhoods in F≥k. Since Ī|F≥k

is a homeomorphism, Fk is preserved.

˜

We now combine Lemmas 3.2 and 4.1 to bridge the gap between isome-
tries of T(S) and automorphisms of P(S).

Lemma 4.2. Ī induces Ī⋆ ∈ Aut(P(S)).

Proof. By Lemma 4.1, we have that Ī induces Ī⋆ ∈ Aut(P0(S)). It
remains to show that Ī⋆ preserves edges in P(S).

Points in the highest level stratum FM correspond to pants decomposi-
tions. If O is any connected component of FM−1, then O and Ī(O) are
both copies of either T(S1,1) or T(S0,4). As with any connected compo-
nent of FM−1, O comes equipped with a Farey graph GO. The lengths
of the edges of GO and GĪ(O) must be the same, since the smallest length
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of a geodesic connecting noded surfaces is an isometry invariant (in fact,
by the remark at the end of Section 3, the surfaces corresponding to O
and Ī(O) are the same). By Lemma 3.2, Lemma 4.1 and Theorem 2.2,
Ī(GO) = GĪ(O); but this is exactly saying that Ī⋆ ∈ Aut(P(S)).

˜

We are now ready to prove the Main Theorem.

Proof. Let I ∈ Isom(T(S)). By Lemma 4.2, I induces Ī⋆ ∈ Aut(P(S)).
By Theorem 2.1, Ī⋆ is induced by a mapping class f . By Corollary 2.4,
f induces I.

Also, by Corollary 2.4, the kernel of the map η : Mod(S) → Isom(T(S))
is the same as the kernel of θ : Mod(S) → Aut(P(S)).

˜
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