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1. Introduction
In the theory of mapping class groups, “curve complexes” assume a role similar to
the one that buildings play in the theory of linear groups. Ivanov, Korkmaz, and Luo
showed that the automorphism group of the curve complex for a surface is generally
isomorphic to the extended mapping class group of the surface. In this paper, we show
that the same is true for the pants complex.

Throughout, S is an orientable surface whose Euler characteristic χ(S) is neg-
ative, while 6g,b denotes a surface of genus g with b boundary components. Also,
Mod(S) means the extended mapping class group of S (the group of homotopy classes
of self-homeomorphisms of S).

The pants complex of S, denoted CP(S), has vertices representing pants decom-
positions of S, edges connecting vertices whose pants decompositions differ by an el-
ementary move, and 2-cells representing certain relations between elementary moves
(see Sec. 2). Its 1-skeleton C1

P(S) is called the pants graph and was introduced by
Hatcher and Thurston. We give a detailed definition of the pants complex in Section 2.

Brock proved that C1
P(S) models the Teichmüller space endowed with the Weil-

Petersson metric, TW P(S), in that the spaces are quasi-isometric (see [1]). Our results
further indicate that C1

P(S) is the “right” combinatorial model for TW P(S), in that
Aut C1

P(S) (the group of simplicial automorphisms of C1
P(S)) is shown to be Mod(S).

This is in consonance with the result of Masur and Wolf that the isometry group of
TW P(S) is Mod(S) (see [10]).

There is a natural action of Mod(S) on C1
P(S); we prove that all automorphisms

of C1
P(S) are induced by Mod(S). The results of this paper can be summarized as

follows:
Aut CP(S) ∼= Aut C1

P(S) ∼= Mod(S)

for most surfaces S.
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THEOREM 1
If S 6= 60,3 is an orientable surface with χ(S) < 0, and θ : Mod(S) −→ Aut CP(S)

is the natural map, then
• θ is surjective;
• ker(θ) ∼= Z2 for S ∈ {61,1, 61,2, 62,0}, ker(θ) ∼= Z2 ⊕ Z2 for S = 60,4, and

ker(θ) is trivial otherwise.

In short, Theorem 1 says that the natural map θ is an isomorphism for most S. The
nontrivial kernels in Theorem 1 are generated by hyperelliptic involutions (see [8]).
Note that CP(60,3) is empty.

THEOREM 2
If S is an orientable surface with χ(S) < 0, then

Aut CP(S) ∼= Aut C1
P(S).

In terms of simplicial automorphisms, Theorem 2 says that the pants complex carries
no more information than its 1-skeleton.

In order to prove Theorem 1, we apply the corresponding theorem for a different
simplicial complex, the curve complex.

THEOREM 3 (Ivanov, Korkmaz, Luo)
If S 6= 60,3 is an orientable surface with χ(S) < 0, and η : Mod(S) −→ Aut C(S)

is the natural map, then
• η is surjective when S 6= 61,2;
• ker(η) ∼= Z2 for S ∈ {61,1, 61,2, 62,0}, ker(η) ∼= Z2 ⊕ Z2 for S = 60,4, and

ker(η) is trivial otherwise;
• Im(η) = Aut? C(S) � Aut C(S) when S = 61,2.

In the theorem, C(S) is the curve complex for S (defined in Sec. 2), and Aut? C(S)

is the subgroup of Aut C(S) which preserves the set of vertices of C(S) representing
nonseparating curves. The surjectivity statement implies that Aut C(S) is the same as
Aut? C(S) for S 6= 61,2. The reason 61,2 is exceptional is that it has a hyperelliptic
involution ρ with the property that the projection 61,2 → 61,2/〈ρ〉 ∼ 60,5 is an
isomorphism on curve complexes, but Mod(61,2)/ ker(η) � Mod(60,5).

Theorem 3 for S 6= 61,2 is originally due to Ivanov for high genus (see [6]) and
Korkmaz for low genus (see [7]). Luo gave a new proof for all genera and also settled
the case of S = 61,2 (see [8]).

Theorem 1 is a refinement of Theorem 3 for two reasons. First, C1
P(S) is a thin

subcomplex of the dual of C(S), so a priori it has more automorphisms. Also, there
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are no exceptional cases to the surjectivity statement in Theorem 1.
The key idea for the proof of Theorem 1 is that there is a correlation between

marked Farey graphs in C1
P(S) and vertices in C(S). An automorphism of C1

P(S) in-
duces a permutation of these Farey graphs, and hence it gives rise to an automorphism
of C(S), at which point Theorem 3 applies.

Theorem 2 actually follows from Theorem 1. However, we give an independent,
elementary proof in Section 4. We show that the 2-cells of CP(S), which are defined
via topological relationships on the surface S, can equivalently be characterized using
only the combinatorics of C1

P(S). For example, square 2-cells of CP(S) are originally
defined as a commutator of two moves on disjoint subsurfaces on S (see Fig. 4). We
prove that square 2-cells can equivalently be defined as loops with four edges in C1

P(S)

which have the property that consecutive edges do not lie in a common Farey graph.
Note that in the second definition there is no reference to S, only C1

P(S). Therefore
any automorphism of C1

P(S) must preserve these square 2-cells of CP(S).

2. The complexes

2.1. Curve complex

Curves. A simple closed curve on S (homeomorphic embedding of the circle) is non-
trivial if it is essential (not null homotopic) and nonperipheral (not homotopic to a
boundary component). Throughout, we use curve to mean homotopy class of simple
closed curves.

Any mention of intersection between two curves α and β refers to the geometric
intersection number i(α, β) (the minimum number of intersection points between two
representative curves of the respective homotopy classes).

Curve complex. The curve complex of S is an abstract simplicial complex denoted
C(S) with vertices corresponding to nontrivial (homotopy classes of simple closed)
curves on S.

A set of k + 1 vertices is the 0-skeleton of a k-simplex in C(S) if there are rep-
resentative curves from the corresponding curve classes which are simultaneously
disjoint. For example, edges correspond to pairs of disjoint curves.

It is a standard fact that if a set of homotopy classes of curves have pairwise
intersection number zero, then there is a single set of representative curves that are
simultaneously disjoint. In other words, every complete graph on k + 1 vertices in
C(S) is the 1-skeleton of a k-simplex in C(S). One way to see this is to fix a hyperbolic
metric on S and take the representative curves to be the unique geodesics in each
homotopy class.
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The curve complex was first defined by Harvey [3]. Harer proved that it is ho-
motopy equivalent to a wedge of spheres (see [2]). Ivanov used the theorem that
Aut C(S) ∼= Mod(S) to give a new proof of Royden’s theorem that Isom(T (S)) ∼=

Mod(S) (where T (S) is the Teichmüller space of S with the Teichmüller metric) (see
[6]). Masur and Minsky showed that C(S) is δ-hyperbolic (see [9]).

The curve complex has an altered definition in two cases. For 60,4 and 61,1,
since there is no pair of distinct simple closed curves with intersection number zero,
two vertices are connected by an edge when the curves they represent have minimal
intersection (2 in the case of 60,4, and 1 in the case of 61,1). It turns out that in both
cases, the curve complex is a modular configuration or Farey graph (see Fig. 1) (see
[11]).

1

Figure 1. A Farey graph

2.2. Pants complex

Pants decompositions. A pants decomposition of S is a maximal collection of distinct
nontrivial simple closed curves on S which have pairwise intersection number zero.
In other words, pants decompositions correspond to maximal simplices of the curve
complex. A pants decomposition always consists of 3g − 3 + b curves (where S =

6g,b). The complement in S of the curves of a pants decomposition is 2g−2+b thrice
punctured spheres or pairs of pants. A pants decomposition is written as {α1, . . . , αn},
where the αi are curves on S.

Elementary moves. Two pants decompositions p and p′ of S differ by an elementary
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Figure 2. Elementary moves between pants decompositions

move if p′ can be obtained from p by replacing one curve in p, say, α1, with another
curve, say, α′

1, such that α1 and α′

1 intersect minimally. If α1 lies on a 60,4 in the
complement of the other curves in p, then “minimally” means i(α1, α

′

1) = 2; if α1

lies on a 61,1 in the complement of the rest of p, then it means i(α1, α
′

1) = 1. These
are the only possibilities, corresponding to whether α1 is the boundary between two
pairs of pants on S or is in a single pair of pants.

An elementary move is denoted {α1, . . . , αn} → {α′

1, α2, . . . , αn} or α1 → α′

1.
Note that there are countably many elementary moves of the form α1 → ?.

Pants graph. The pants graph of S, denoted C1
P(S), is the abstract simplicial complex

with vertices corresponding to pants decompositions of S, and edges joining vertices
whose associated pants decompositions differ by an elementary move.

Note that the pants graphs for 60,4 and 61,1 have the same definitions as (the
1-skeletons of) the curve complexes for these surfaces—all four are Farey graphs (see
Fig. 2).

Pants complex. The pants complex of S, denoted CP(S), has C1
P(S) as its 1-skeleton,

and it also has 2-cells representing specific relations between elementary moves which
are given by topological data on S, as depicted in Figures 3 – 6.

The pants complex was first introduced by Hatcher and Thurston as a tool for
constructing a finite presentation of Mod(S) (see [5]). Hatcher, Lochak, and Schneps
gave the pants complex its present form, and, in particular, they showed that it is
connected and simply connected (see [4]).

3. Proof of Theorem 1
Let S = 6g,b (6= 60,3) be an orientable surface with χ(S) < 0, and let n = 3g−3+b
be the number of curves in a pants decomposition of S.
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Figure 3. Triangular 2-cells in the pants complex
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Figure 4. Square 2-cells in the pants complex (moves can be of
either type)

Outline. The idea for the proof of Theorem 1 is to construct an isomorphism φ so that
the following diagram commutes:

Mod(S) Mod(S) Mod(S)

θ

y y yη

Aut CP(S)
ι

−−−−→ Aut C1
P(S)

φ
−−−−→ Aut C(S)

The surjectivity of θ (Th. 1) then follows from the surjectivity of η (Th. 3) and the
injectivity of the natural map ι. Note that ι must also be surjective, so ι is an isomor-
phism (Th. 2). The description of ker(θ) (Th. 1) also follows from Theorem 3.

For the case of S = 61,2, a separate argument is needed to show that image(φ) ⊂

image(η) = Aut∗ C(S) (see Sec. 5).
In order to construct φ, we develop the following natural surjective map:

{marked abstract Farey graphs in C1
P(S)} −� {vertices of C(S)}.
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Here, an abstract Farey graph is any subgraph of C1
P(S) abstractly isomorphic to

a Farey graph; and a marked graph (F, X) is a graph F with a distinguished vertex X .

3.1. Definition of φ

To begin, we completely characterize triangles in C1
P(S) since they are the building

blocks of Farey graphs. By triangle, we mean a subgraph of C1
P(S) which is a com-

plete graph on three vertices. The following lemma implies that the three pants de-
compositions associated to the vertices of any triangle are of the form {?, α2, . . . , αn}.

LEMMA 1
Every triangle in C1

P(S) is the boundary of a triangular 2-cell of CP(S).

Proof
Suppose that P , Q, and R are the vertices of a triangle in C1

P(S). Since the pants
decompositions associated to P and Q differ by an elementary move, they must
differ by exactly one curve. Say that P and Q are associated to {α1, . . . , αn} and
{α′

1, α2, . . . , αn}. A pants decomposition associated to R must have exactly n − 1
curves in common with each of these, so it must, in fact, contain α2, . . . , αn . (Other-
wise, it would have to contain α1 and α′

1, which cannot happen since i(α1, α
′

1) > 0.)
Hence R is associated to {α′′

1 , α2, . . . , αn} for some α′′

1 .
The curves α1, α′

1, and α′′

1 lie on a common subsurface S′ (either a 61,1 or a 60,4)
in the complement of {α2, . . . , αn}. Thus the triangle P Q R can be thought of as one
of the triangles in C1

P(S′), which correspond exactly to triangular 2-cells.

By piecing triangles together, we can characterize Farey graphs in C1
P(S).

LEMMA 2
There is a natural surjective map from the set of marked abstract Farey graphs in
C1

P(S) to the set of vertices of C(S).

Proof
Let (F, X) be a marked abstract Farey graph in C1

P(S). Since F is chain-connected
(any two triangles can be connected by a sequence of triangles so that consecutive
triangles share an edge), and since the pants decompositions associated to any triangle
are of the form {α1

1, α2, . . . , αn}, {α2
1, α2, . . . , αn}, {α3

1, α2, . . . , αn}, it follows that
there are n − 1 fixed curves (α2, . . . , αn) and one moving curve (the αi

1’s) in the pants
decompositions associated to the vertices of F . The vertex X distinguishes one of the
αi

1. Hence there is a unique vertex v(F,X) of C(S) corresponding to (F, X).
To show that the map defined above is surjective, we now find a marked Farey
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graph corresponding to a given vertex v of C(S). If v is associated to the curve
α1 on S, then choose a vertex X of C1

P(S) associated to some pants decomposition
{α1, α2, . . . , αn} containing α1. Since the complement of α2, . . . , αn in S is a num-
ber of pants and either a 60,4 or 61,1, the set of pants decompositions of the form
{?, α2, . . . , αn} corresponds to a Farey graph Fv

∼= C1
P(60,4) ∼= C1

P(61,1) in C1
P(S),

and (Fv, X) corresponds to v; that is, v(Fv,X) = v.

By a slight abuse of notation, we say that v(F,X) corresponds to (F, X), and vice versa
(even though the map is not bijective).

Now that we have the correspondence of Lemma 2, and we are ready to define
the map φ.

Definition of φ. Let A ∈ Aut C1
P(S). We define φ(A) : C (0)(S) → C (0)(S) (and

hence φ) by way of saying what φ(A) does to each vertex of C(S).
If v is a vertex of C(S), and (Fv, X) is some marked Farey graph in C1

P(S) cor-
responding to v (recall that there is a choice here), then φ(A)(v) is defined to be
v(A(Fv),A(X)), the unique vertex of C(S) corresponding to the marked Farey graph
(A(Fv), A(X)).

3.2. φ is well defined
In order to show that φ is well defined, we require two new concepts: alternating
sequences and small circuits.

Circuits. A circuit is a subgraph of C1
P(S) homeomorphic to a circle. We define tri-

angles, squares, pentagons, and hexagons to be circuits with the appropriate number
of vertices.

For the definition of alternating below, note that an edge of C1
P(S) lies in a unique

Farey graph in C1
P(S). This fact follows from the proof of Lemma 2.

Alternating sequences. A sequence of consecutive vertices P1 P2 · · · Pm in a circuit
is called alternating if the unique Farey graph containing the edge Pi−1 Pi is not the
same as the unique Farey graph containing Pi Pi+1 for 1 < i < m. By Lemma 2, an
equivalent characterization of alternating is that the pants decompositions associated
to Pi−1, Pi , and Pi+1 have no set of n − 1 curves in common.

A useful working definition of an alternating sequence of vertices P Q R is that
if the elementary move corresponding to P Q is ? → α, then the elementary move
corresponding to Q R is not of the form α → ?. A circuit in C1

P(S) with the prop-
erty that any three consecutive vertices make up an alternating sequence is called an
alternating circuit.
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Since alternating sequences are defined in terms of the combinatorics of C1
P(S),

we have the following.

LEMMA 3
Automorphisms of C1

P(S) preserve alternating sequences.

Small circuits. A small circuit in C1
P(S) is a circuit with no more than six edges. We

give a partial characterization, which is used to show that the map φ is well defined
and to prove the results in Section 4.

A 2-curve small circuit is a circuit with the property that the pants decomposi-
tions associated to its vertices all contain the same set of n −2 curves; that is, they are
of the form {?, ?, α3, . . . , αn}. For convenience, small circuits that are subgraphs of
Farey graphs are also called 2-curve small circuits (by Lem. 2 they are really “1-curve
small circuits”).

LEMMA 4
Any small circuit that is not a 2-curve small circuit is an alternating hexagon.

Proof
Let L be the small circuit, and say that one of its vertices is associated to the pants
decomposition p = {α1, α2, . . . , αn}. Since L is not a 2-curve small circuit, then
(after picking a direction around L ) there must be three edges of L corresponding
to moves of the form αi → ?, α j → ?, and αk → ? with 1 ≤ i, j, k ≤ n distinct.
Without loss of generality, we have

α1
m1
−→ α′

1, α2
m2
−→ α′

2, α3
m3
−→ α′

3.

In order to make L a closed loop, there must also be three edges of the form

?
m′

1
−→ α1, ?

m′

2
−→ α2, ?

m′

3
−→ α3.

Note that these six moves are distinct. In other words, α′

i is not α j for any j . This
is true because i(α′

i , αi ) > 0 (they differ by an elementary move), while i(αi , α j ) = 0
(they both appear in the pants decomposition p). Since L is a small circuit, there are
no further edges.

Further, we claim that each m′

i is given by α′

i → αi . If, on the contrary, we have,
for example, that m′

1 is α′

2 → α1, then i(α′

2, α1) > 0 and i(α′

2, α2) > 0 (α′

2 differs
from both by an elementary move). Thus, among the set of curves {α1, α

′

1, α2, α3, α
′

3},
α′

2 can appear only in a pants decomposition with α′

1, α3, α′

3. So the only possibilities
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for m′

1 are

{α′

2, α
′

1, α3}
m′

1
−→ {α1, α

′

1, α3},

{α′

2, α
′

1, α
′

3}
m′

1
−→ {α1, α

′

1, α
′

3},

{α′

2, α
′

3, α3}
m′

1
−→ {α1, α

′

3, α3},

which are all impossibilities since they each contain a pair αi and α′

i , but i(αi , α
′

i ) >

0. (Note that we ignore the curves α4, . . . , αn , as they must appear in each pants
decomposition.)

Now L must be alternating because otherwise it has a pair of consecutive edges
corresponding to mi and m′

i .

An immediate consequence of Lemmas 3 and 4 is the following.

LEMMA 5
If A ∈ Aut C1

P(S), and L is a small circuit that is not an alternating hexagon, then
A(L ) is a 2-curve small circuit.

LEMMA 6
The map φ : Aut C1

P(S) −→ Aut C(S) is well defined.

Proof
Let v be a vertex in C(S) associated to the curve α1 on S. We need to show that
if p and p′ are two pants decompositions that give rise to two marked Farey graphs
(Fv, X) and (F ′

v, X ′) corresponding to v, then the two vertices of C(S) corresponding
to (A(Fv), A(X)) and (A(F ′

v), A(X ′)) are the same.
Actually, by the connectedness of C1

P(S − α1), we only need to treat the case
when p and p′ differ by an elementary move, say, α2 → α′

2.
The idea is as follows: we find a 2-curve small circuit L (not an alternating

hexagon) such that four of its vertices make up an alternating sequence W X X ′Y with
W, X ∈ (Fv, X) and X ′, Y ∈ (F ′

v, X ′) (see Fig. 7).
Suppose that (A(Fv), A(X)) corresponds to a vertex of C(S) representing

the curve β1, and suppose that A(X) is associated to the pants decomposition
{β1, . . . , βn}. We show that (A(F ′

v), A(X ′)) also corresponds to the vertex represent-
ing β1.

Since the edge A(W )A(X) is in (A(Fv), A(X)), it corresponds to a move of the
form ? → β1. As A(W )A(X)A(X ′) is alternating (Lem. 3), A(X)A(X ′) corresponds
to a move β2 → ?. Now, combining the facts that A(X)A(X ′)A(Y ) is alternating
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Figure 7. The 2-curve small circuit L

(Lem. 3) and that A(L ) is a 2-curve small circuit (Lem. 5), it follows that the move
corresponding to A(X ′)A(Y ) is of the form β1 → ?, and so the vertex of C(S) corre-
sponding to (A(F ′

v), A(X ′)) represents β1.

Finding the 2-curve small circuit. To prove that φ is well defined, the only thing left
is to show that there always exists a 2-curve small circuit L as above. There are four
cases to consider:
(1) α1, α2 lie on disjoint subsurfaces;
(2) α1, α2 lie on a 60,5;
(3) α1, α2 lie on a 61,2, and one of α1, α2, or α′

2 is separating;
(4) α1, α2 lie on a 61,2, and α1, α2, and α′

2 are nonseparating.
Note that a curve is separating on 61,2 ⊂ S if and only if it is separating on S.

Case 1. Let L be the boundary of a square 2-cell containing X, X ′.

Case 2. Let L be the boundary of a pentagonal 2-cell containing X, X ′.

Case 3. There are only three possibilities for the curves α1, α2, and α′

2 since a pants
decomposition of 61,2 cannot have two separating curves, and two separating curves
on 61,2 cannot differ by an elementary move:
• α1 is separating, α2 and α′

2 are nonseparating;
• α1 and α2 are nonseparating, and α′

2 is separating;
• α1 is nonseparating, α2 is separating, and α′

2 is nonseparating.
Note that the second and third possibilities are equivalent by symmetry.
In any case, choose L to be the boundary of a hexagonal 2-cell. For the first
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Figure 8. Reduction of case 4 to case 3

possibility, choose L so that X and X ′ correspond to the vertices T and U in Figure 6.
For the second possibility, X and X ′ should correspond to S and T .

Case 4. Since this situation does not occur in any of the circuits bounding 2-cells of
CP(S), we reduce to case 3 by showing that any elementary move on a 61,2 of the
form {α1, α2} → {α1, α

′

2} with α1, α2, and α′

2 all nonseparating can be realized by a
pair of elementary moves {α1, α2} → {α1, α

′′

2 } → {α1, α
′

2} which fall under case 3.

Topologically, α1 and α2 are as in Figure 8. (The complement of a pair of nonsepa-
rating curves on 61,2 is two copies of 60,3, each with one boundary component of
the 61,2.) Then there is one topological possibility for α′

2, as α′

2 differs from α2 by an
elementary move on 60,4 = 61,2 − α1, and the two boundary components of 61,2

lie on different sides of α′

2. (Recall that α′

2 is nonseparating.) Thus α′

2 is also as in
Figure 8. Therefore we may choose α′′

2 as in the same figure.

3.3. φ maps into Aut C(S)

Since C(S) has the property that every set of k + 1 mutually connected vertices is the
1-skeleton of a k-simplex in C(S), it follows that Aut C(S) ∼= Aut C1(S). Therefore
we only need to check that φ(A) extends to an automorphism of the 1-skeleton of
C(S), that is, that φ(A) takes vertices connected by edges to vertices connected by
edges.

Suppose that v and w are vertices of C(S) associated to curves α and β on S, and
let X (a vertex of C1

P(S)) correspond to some pants decomposition {α, β, γ3, . . . , γn}.
Then let Fv and Fw be the Farey graphs corresponding to the pants decompositions
{?, β, γ3, . . . , γn} and {α, ?, γ3, . . . , γn}. In this case, (Fv, X) and (Fw, X) are marked
Farey graphs corresponding to v and w, and which intersect at one vertex (X ). Note
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that this construction is possible if and only if α and β appear in a common pants
decomposition, which is equivalent to the existence of an edge between v and w.
Since intersections between Farey graphs are strictly preserved under A, and since
φ(A) is independent of choice of marked Farey graph, it follows that edges of C(S)

are preserved under φ(A).

3.4. φ is an isomorphism
Multiplicativity. Let A, B ∈ Aut C1

P(S). We show that φ(AB)v = φ(A)φ(B)v for
any vertex v in C(S). By definition, φ(AB)v is the vertex in C(S) corresponding to
(AB(Fv), AB(X)), where (Fv, X) is a marked Farey graph in CP(S) corresponding to
v. On the other hand, φ(B)v is the vertex w of C(S) corresponding to (B(Fv), B(X)),
and φ(A)φ(B)v is the vertex of C(S) corresponding to (A(Fw), A(Y )), where
(Fw, Y ) is some Farey graph corresponding to w. We can choose (Fw, Y ) to be
(B(Fv), B(X)), and so φ(A)φ(B)v is the vertex corresponding to (AB(Fv), AB(X)),
which is the same as φ(AB)v.

Surjectivity. It suffices to show that the diagram at the beginning of this section
is commutative. Let f ∈ Mod(S), and let v be the vertex of C(S) associated to
a curve α1 on S. Then φ ◦ ι ◦ θ( f )(v) is the vertex of C(S) corresponding to
(ι ◦ θ( f )(Fv), ι ◦ θ( f )(X)), where (Fv, X) is a marked Farey graph correspond-
ing to v. But if Fv and X correspond to pants decompositions {?, α2, . . . , αn} and
{α1, . . . , αn}, then ι ◦ θ( f )(Fv) and ι ◦ θ( f )(X) correspond to {?, f (α2), . . . , f (αn)}

and { f (α1), . . . , f (αn)}. Thus (φ ◦ ι ◦ θ)( f )(v) = η( f )(v), the vertex of C(S) rep-
resenting f (α1).

Injectivity. Suppose that φ(A) is the identity in Aut C(S), and let X be the vertex of
C1

P(S) associated to the pants decomposition {α1, . . . , αn}, where v1, . . . , vn are the
vertices of C(S) associated to the αi . Denote by Fvi the Farey graph corresponding to
the pants decompositions

{α1, . . . , αi−1, ?, αi+1, . . . , αn}.

The (Fvi , X) correspond to the vi , and the Fvi all intersect at the vertex X in C1
P(S).

Since (A(Fv1), A(X)), . . . , (A(Fvn ), A(X)) must be marked Farey graphs corre-
sponding to {φ(A)(vi )} = {vi } for 1 ≤ i ≤ n and intersecting at one vertex, it follows
that their common intersection is X . Thus A(X) = X , and so A is the identity in
Aut C1

P(S).

4. Proof of Theorem 2
Our goal is now to show that it is possible to recognize the 2-cells of CP(S) simply
by considering the combinatorics of C1

P(S), and without reference to the surface S.
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This gives a complete proof of Theorem 2 and helps prove Theorem 1 for the case of
S = 61,2.

Again, S = 6g,b is an orientable surface with χ(S) < 0, and n = 3g − 3 + b
is the number of curves in a pants decomposition for S. Recall that a circuit is a
subgraph of C1

P(S) homeomorphic to a circle, and that triangles, squares, pentagons,
and hexagons are circuits with the usual number of vertices.

Triangles. Lemma 1 says that every triangle in C1
P(S) is the boundary of a triangular

2-cell in CP(S).

Squares. We show that square 2-cells in CP(S) can equivalently be characterized as
alternating squares in C1

P(S).

LEMMA 7
Every alternating square in C1

P(S) is the boundary of a square 2-cell in CP(S).

Proof
Let P , Q, R, and S be the (ordered) vertices of an alternating square in C1

P(S). By
Lemma 4, P Q RS is a 2-curve small circuit, so the associated pants decompositions
all contain a common set of n−2 curves, say, α3, . . . , αn (which we take to be implicit
below).

Using the fact that P Q RS is alternating, we have that the pattern of curves is as
follows:

P
{α1, α2}−→

Q
{α1, α

′

2}−→

R
{α′

1, α
′

2}−→

S
{α′

1, α2}.

Note that α2 must be in the pants decomposition for S since S P Q is alternating.
It remains to show that α1 and α2 lie on different subsurfaces in the complement

of α3, . . . , αn , as per the definition of square 2-cells. Assume that α1 and α2 lie on a
connected subsurface S′

⊂ S − {α3, . . . , αn}. Since S′ has a pants decomposition of
two curves ({α1, α2}), S′ is either 60,5 or 61,2.

There are four topological possibilities for α1, α2, and α′

2—on the 60,5 there is
only one possibility, and on the 61,2 there are two cases (cases 3 and 4 of Lem. 6). It
is clear that in each of the cases there is no curve α′

1 which intersects α1 minimally
and is disjoint from α2 and α′

2. This is a contradiction, so α1 and α2 lie on different
subsurfaces.

Pentagons. We now prove that pentagonal 2-cells in CP(S) can be characterized as
alternating pentagons in C1

P(S).
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LEMMA 8
Every alternating pentagon in C1

P(S) is the boundary of a pentagonal 2-cell in CP(S).

Proof
Let P , Q, R, S, and T be the (ordered) vertices of an alternating pentagon in C1

P(S).
By Lemma 4, the pants decompositions associated to these vertices all have n − 2
curves in common, say, α3, . . . , αn . (These curves are implicit in the pants decompo-
sitions below.)

Because P Q RST is an alternating sequence, the pattern of curves in the pants
decompositions for those vertices is

P
{α1, α2}−→

Q
{α1, α

′

2}−→

R
{α′

1, α
′

2}−→

S
{α′

1, α
′′

2 }−→

T
{α2, α

′′

2 }.

Note that α2 must be in the pants decomposition for T since Q PT is an alternat-
ing sequence.

Since curves in a pants decomposition are disjoint, we have that for the sequence
α1α

′

1α2α
′

2α
′′

2α1, curves differ by an elementary move if they are adjacent in the se-
quence and are disjoint otherwise. Our goal now is to show that these curves must be
the ones in Figure 5.

First, α1 and α2 do not lie on disjoint subsurfaces (α′

1 has nontrivial intersection
with both of them). Therefore α1 and α2 must lie on a 60,5 or 61,2 in S−{α3, . . . , αn}.

In the first case, the curves α2, α′

2, α′′

2 , α1, and α′

1 must be topologically as in
the definition of pentagonal 2-cells in the pants complex (Fig. 5). This is because
α1, α

′′

1 , α2, α
′

2 is a regular chain (curves intersect twice if consecutive and are disjoint
otherwise), and regular chains are topologically unique. Then α′′

2 is the unique curve
intersecting α1 and α′

2 each twice in the complement of the other curves.
We now show that the second case cannot happen, that is, that there is no such

sequence of curves on 61,2.
Assume that on 61,2 there is a sequence αβγ δεα with the property that consec-

utive curves intersect minimally and other pairs are disjoint. In such a sequence, there
can be at most one curve that is separating on 61,2 since two separating curves on
61,2 intersect at least four times. We consider the following two cases:
(1) the sequence has a separating curve;
(2) the sequence has no separating curve.

Below, we call a nonseparating curve on 61,2 of (p, q)-type if it is a (p, q) curve
on the torus obtained by forgetting the two punctures.

Case 1. Suppose that there is a separating curve in the sequence, say, α. It follows that
the other curves in the sequence are nonseparating and that α separates 61,2 into a
60,3 and a 61,1. Since γ and δ both have trivial intersection with α and have minimal
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δ
α

γ

Figure 9. Case 1: The configuration for α separating

δ

α

γ

Figure 10. Case 2: The configuration for α nonseparating

intersection with each other in the complement of α, they must lie on the 61,1 and
intersect once; say that γ and δ are of (1, 0)- and (0, 1)-type, respectively. As β and
ε are both nonseparating curves on 61,2, and i(β, δ) = 0, β must be of (0, 1)-type;
likewise, ε must be of (1, 0)-type. This implies that i(β, ε) > 0 (curves of different
type intersect), so we have a contradiction (see Fig. 9).

Case 2. Now suppose that all the curves in the sequence are nonseparating. Since all
elementary moves involving three nonseparating curves are topologically equivalent,
we can assume, without loss of generality, that α, γ , and δ are the curves in Figure 10.

In order to have i(β, α) = 2 and i(β, δ) = 0, we must have that when S is cut along
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α and δ, the two components of β are essential arcs on the two 60,3-components of
S − (α ∪ δ). However, it is easy to see that on each of these components, any essential
arc with endpoints on α must intersect (a piece of) γ at least twice (in an essential
way). Thus i(β, γ ) ≥ 4, a contradiction.

Hexagons. An almost-alternating hexagon in C1
P(S) is a hexagon with an alternat-

ing sequence of six vertices, and a sequence of three vertices that lie on a square in
some Farey graph (and do not lie in a common triangle). Note that the boundary of a
hexagonal 2-cell is an almost-alternating hexagon.

LEMMA 9
Every almost-alternating hexagon in C1

P(S) is the boundary of a hexagonal 2-cell in
CP(S).

Proof
Let P , Q, R, S, T , and U be (ordered) vertices of an almost-alternating hexagon,
where U P Q lie in a common Farey graph. Then P Q RST U must be an alternating
sequence.

Since an almost-alternating hexagon is not an alternating hexagon, then by
Lemma 4, the pants decompositions associated to the vertices all have a set of n − 2
curves in common, say, α3, . . . , αn (as usual, we ignore these curves below).

As P Q RST U is alternating, we get the following pattern of curves for the asso-
ciated pants decompositions:

P
{α1, α2}−→

Q
{α′

1, α2}−→

R
{α′

1, α
′

2}−→

S
{α′′

2 , α′

2}−→

T
{α′′

2 , α′′

1 }−→

U
{α2, α

′′

1 }.

Note that the pants decomposition for U must have the curve α2 since U P Q lies
in a Farey graph.

The goal now is to show that the curves must be as the curves corresponding to a
hexagonal 2-cell (Fig. 6). We take the following steps:
(1) α1, α2 do not lie on disjoint subsurfaces;
(2) α1, α2 do not lie on a 60,5 (and hence they lie on a 61,2);
(3) α2 is nonseparating on the 61,2;
(4) α1 is nonseparating on the 61,2;
(5) α′

1 (and hence α′′

1 ) is separating on the 61,2;
(6) the choices of α1, α

′

1, α
′′

1 , α2, α
′

2, α
′′

2 on 61,2 are topologically unique.

Step 1. The curves α1 and α2 cannot lie on disjoint subsurfaces since there is a chain
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Figure 11. Step 2: The configuration for α1 and α2 on a 60,5

of curves connecting them which are disjoint from α3, . . . , αn:

α1 −→ α′′

1 −→ α′

2 −→ α2.

Step 2. Assume that α1 and α2 lie on a 60,5 in the complement of α3, . . . , αn . Since
P , Q, and U are the vertices of a square in a Farey graph, and α2 appears in all
three associated pants decompositions, the aforementioned Farey graph is C1

P(60,4),
where 60,4 = 60,5 − α2. Then since any two squares in C1

P(60,4) are topologically
equivalent, it follows that the pants decompositions associated to P , Q, and U are
as in Figure 11. (In the figure, a boundary component is represented by a puncture,
and a curve is represented by an arc; to recover the curve, take a boundary of a small
neighborhood of the arc.)

The edges Q R and U T (note directions) correspond to the elementary moves
α2 → α′

2 and α2 → α′′

2 . Since all elementary moves on 60,5 are topologically equiv-
alent, both α′

2 and α′′

2 must be represented by arcs that have an endpoint at the puncture
a (see Fig. 11). It follows that i(α′

2, α
′′

2 ) > 0. This is a contradiction since α2 and α′′

2
appear together in the pants decomposition associated to the vertex S.

Step 3. If we assume that α2 is separating on 61,2, then it separates 61,2 into a 60,3

and a 61,1. Then {α1}, {α′

1}, and {α′′

1 } are pants decompositions of the 61,1, whose as-
sociated vertices in C1

P(61,1) lie on a square (but not a triangle). Then, topologically,
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α2

α
′′

1 α
′

1

α1

Figure 12. Step 4: The configuration for α1 separating

α′′

1 , α1, and α′

1 are the (1, 0)-, (2, 1)-, and (1, 1)-curves on the 61,1, so they are of the
same three types on the 61,2 (see Lem. 8). Since α2 is separating, α′

2 and α′′

2 must
both be nonseparating. (They must have intersection number with α2 no more than 2.)
Also, because i(α′

2, α
′

1) = 0 (the two form a pants decomposition), it follows that α′

2
must be of type (1, 1). Likewise, α′′

2 must be of type (1, 0). However, since α′

2 and α′′

2
must make up a pants decomposition of 61,2, they must have trivial intersection; but
curves of different type always have nontrivial intersection, a contradiction.

Step 4. Assume that α1 is separating on the 61,2. Since all pants decompositions con-
taining a separating curve are topologically equivalent, we assume that α1 and α2 are
as in Figure 12.

Now, there is a unique choice for α′

1, as i(α′

1, α1) = 2 and i(α′

1, α2) = 0. Since α′′

1
must be part of a square (but not a triangle) with the vertices of C1

P(60,4) associated
to α1 and α′

1, the choice of α′′

1 is topologically unique.
The curve α′

2 must have trivial intersection with α′

1, and it must differ from both
α′′

1 and α2 by elementary moves. By the same argument as in case 2 of Lemma 8,
there is no such α′

2, so we have a contradiction.

Step 5. Without loss of generality, α1 and α2 are the curves in Figure 13. If we assume
that α′

1 is nonseparating on the 61,2, then since {α1, α2} → {α′

1, α2} is an elementary
move, the choice for α′

1 is topologically unique.
In order for α′

1, α1, and α′′

1 to lie on a square (but not a triangle) in the Farey
graph C1

P(60,4) = C1
P(S − α2), and for α1 to differ from α′

1 and α′′

1 by elementary
moves, we must have i(α1, α

′

1) = i(α1, α
′′

1 ) = 2 and i(α′

1, α
′′

1 ) = 4. The only such
configuration is shown in Figure 13.

Again, we must have i(α′

2, α
′

1) = 0, and α′

2 must differ from α′′

1 and α2 by ele-
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α2

α
′′

1 α
′

1
α1

Figure 13. Step 5: The configuration for α′
1 nonseparating

α
′

2

α2

α1

α
′

1
α
′′

1

α
′′

2

Figure 14. Step 6: The unique configuration for almost-alternating
hexagons

mentary moves. By the same argument as in case 2 of Lemma 8, there is no such α′

2,
and we have a contradiction.

Step 6. Starting with α1 and α2 (both nonseparating), we can assume that they are as
in Figure 14. As above, i(α1, α

′

1) = i(α1, α
′′

1 ) = 2, i(α′

1, α
′′

1 ) = 4, and i(α′

1, α2) =

i(α′′

1 , α2) = 0. The only such topological configuration is shown in Figure 14.

Finally, there are unique choices for α′

2 and α′′

2 , as α′

2 must have trivial intersection
with α′

1 and must have minimal intersection with α2 and α′′

1 , while α′′

2 must have trivial
intersection with α′′

1 and must have minimal intersection with α2 and α′

1.

Lemmas 1, 7, 8, and 9 say that each kind of 2-cell in C1
P(S) can be recognized com-
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pletely in terms of the combinatorics of C1
P(S). Therefore Aut C1

P(S) and Aut CP(S)

are canonically isomorphic, and Theorem 2 is proved.

5. Theorem 1 for S = 61,2

As stated in Theorem 3, the exceptional feature of 61,2 is that the natural map
η : Mod(61,2) −→ Aut C(61,2) is not a surjection. More precisely, the image of
η is Aut? C(61,2), the subgroup of Aut C(61,2) consisting of elements that preserve
the set of vertices associated to nonseparating curves on 61,2. Therefore the only
added complication is to show that the image of φ (as defined in Sec. 3.1) lies in
Aut? C(61,2).

Let v be a vertex of C(61,2) representing a nonseparating curve α, and let X in
C1

P(S) represent {α, β}, a pants decomposition with β nonseparating. This gives rise
to a marked Farey graph (Fv, X) corresponding to v. Note that there is a hexagonal
2-cell containing X with the property that X corresponds to the vertex P in Figure 6.
The vertex P is distinguished as the middle vertex of the nonalternating sequence in
an almost-alternating hexagon. This construction is possible only for α nonseparating.
Since almost-alternating hexagons and nonalternating sequences are preserved by au-
tomorphisms of C1

P(S) (Lems. 3 and 9), and since φ is independent of the choice of
marked Farey graphs, we are done.
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