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Abstract

As part of a 2002 VIGRE mini-course at University of Utah, we present
properties of eigenvalues and eigenfunctions for the second-order Sturm-
Liouville boundary value problem. Most of our proofs are adapted from
[1] and are given using variational methods. Examples are also discussed.

Introduction

We define the Sturm-Liouville operator L on a bounded interval [a, b] via
Lu := —(puw)! + qu,

where p € C*([a,b]), q€ C(la,b]), p>v>0, veR, andgq>0.
We are interested in the Sturm-Liouville Eigenvalue Problem (SLEP) with
Dirichlet boundary conditions:

Lu=Xu, A€eR (1)
u(a) =u(b) =0 (2)

Definition 1. Values of X for which (1),(2) has a nontrivial solution are called
eigenvalues and a nontrivial solution u corresponding to \ is called an eigen-
function. The pair (A, u) is called an eigenpair for the SLEP (1), (2).

First, we present an example of how a PDE can lead to a SLEP. This example
can be found in [2].



Example 1. In this example we use separation of variables to show how we can
get solutions of the two dimensional Laplace’s equation

Uy + Uyy = 0.
We look for solutions of the form
u(z,y) = X(2)Y (y)-
sFrom Laplace’s equation we get
X"Y + XYY" =0.
Separating variables and assuming X (x) # 0, Y (y) # 0 we get

X// Y//
5

Since the left hand side of this equation depends only on x and the right hand
side depends only on y we get that
X"(x)  Y"(y)
X@) Y

:)\7

where X\ is a constant. This leads to the Sturm-Liouville differential equations
X"=-)X, Y'=)\Y. (3)

It follows that if X is a solution of the first differential equation in (3) and Y
is a solution of the second equation in (3), then

u(z,y) = X(2)Y (y)

18 a solution of Laplace’s partial differential equation.

Existence of minimizers

Using standard variational methods of Lagrange multiplier type, we look for
minimizers of the functional

b
Flul = [ p(a!)? + qu? da,

whose corresponding Euler-Lagrange equation is given by the Sturm-Liouville

equation, over
b

A= {uc H}([a,b]) :/ u?dx =1}

a

so that a minimizer will yield the equation

77F/[u] — )\u”’



b b
/ pu' ¢’ + qup dx = )\/ ugp

for all ¢ in H{([a,b]). The minimization will yield some suprising and useful
results about the eigenvectors of the operator.

For our purposes we consider the minimization problem in a closed subspace
V of H{([a,b]). First, to guarantee a minimum, we need F[u] to be bounded
below and thus require the assumption that p(z) > 6 > 0 and ¢(z) > 0. Then
F[u] has an infimum over A, which we call o, and a minimizing sequence ug. To
use our compactness results we would like the uy to be bounded in H{([a, b)),
but this follows from the Poincire inequality and coercivity of the functional F,
which we see in the chain of inequalities

b
M > Fluy] = / p(ui)* + qui dz > 0|uj ||z +0 = Cllurl |y (a6

a

As H{([a,b]) is a Hilbert space (i.e. a reflexive Banach space)
Uk T H(fa b)) ¥

weakly for some u € Hg([a,b]). This u is our candidate for the minimizer of
Flu]. All is left to show is that Flu] < liminf Flug] and u € A, i.e. ||u||pz = L.
These two conditions guarantee that u is indeed a minimizer in V.

WLSC

To develope this inequality, we introduce the (notation saving) symmetric,
H}([a,b]) coervive, continuous, bilinear form

b
a(u,v) = / pu'v + quu dx
associated to F'.
Flug] > 2a(u, ug) — a(u, u).

And so, in the limit,

a > 2a(u,u) — a(u,u) = Flu).

u is contained in V and A

Since the uy, are bounded in H}([a, b]), which is compactly embedded in L?, we
know of the existence of a v € L? to which the u;, converge strongly in L?. We
don’t yet, however, know that u and v are the same element. But for arbitrary
w € L2, we have

(u—v,w)z2) < |(u,w) = (ug, )| + |(v = ug, w),



where the left term can be made arbitrarily small since weak convergence in
H{([a,b]) implies weak convergnce in L? and the second term can be made
arbitrarily by the Cauchy inequality and strong convergence in L2. Since L2
is a Hilbert space, and now (v — u,w) = 0 for any w € L%, we must conclude
that v = v. But this proves that u € A, because up — 2 v implies that
[lv=u||gz =1.

V is a closed subspace for which we may apply Mazur’s theorem which asserts
that closed, convex sets are weakly closed. It follows that u € V' as well.

Conclusion

Combining the above two results we find that by WLSC
Flu] <lim Flug] = «
and because u is contained in A and V,

a= inf Fv] < Flul.
veEAV
We conclude that Flu] = o and that « the minimizes F' over A and V. subsec-
tion*Eigenpairs As discussed, the inductive minimizing of the functional F over
the subspaces V; produces a chain of functions and their corresponding values
under F',
UL, U2y oeey Ujy - )\1 S )\2 S S )\z = F[uz] S

We will show that these u; and \; are actually eigenpairs for the Sturm-Liouville
operator. To avoid later confusion, we note that the homogeneity of the func-
tional F' allows us consider the following two problems as equivalent;

min Flo]=X; <= min Flv]

L
veEA,V; veV; ||UHL2

Thus, we will frequently see the inequality
F[ui]g/\i/ﬁda:, v € V;,
without having to assume that ||v||f2 = 1.

Obtaining Eigenpairs

To obtain our eigenpairs, we inductively define a sequence of closed subspaces
of H}([a,b]).
Define

A= {u € H([a,b]) : |ullz> = 1}.

Let
Vi := Hj([a,b]) and W;:=VinA.



Minimizing F on Wy, we get u; € Wi and
A =inf{F(u) : vwe Wi} =F(u).

Next, let
Voi=<u; > and Wy:=Von A.

Minimizing F on W5, we get us € Wy and
A2 =inf {F(u) : ue Wa} = F(ug).
Continue this process with
Vyi=<up > N<uy>N...N<up_y > and W, :=V,NA.

Minimize F on W, to get the pair (A, uy).

Notice that
W1DWQDWgD...DWnDWnJrlD...,

and hence,
A< S S S

Also, by construction, we get

b .
1 ifn=%k
/a UpUp AT = 0y,  where 0, 5 = { 0 ifn £k

Proof of eigenpairhood

If € V; and € # 0, then u; + e € V; and by definition of a minimizer,

a(u; + €p,u; + €p) > N\ /(uZ + €¢) dx.

2elalus, ) = [ woda] + fa(6,0) =\ [ o da] 20

The second term is positive by definition of the minimum, and by taking e
negative and small enough, so that the first term dominates the second, we
must conclude

alug, @) — N\ /um dz = 0.

Now, more generally, for arbitrary ¢ € Hi([a, b)), differs from a ¢ in V; by a
linear combination of uy for k =1,...,4 — 1. But since

a(ug, ug) = /uiuk dx = 55,

the before last equality holds for ¢ in place of ¢. This is exactly the weak
formulation that (u;, A;) form an eigenpair for the Sturm-Liouville operator.



Properties of the eigenpairs

Most obvious is that the eigenvalues are ordered as a result of the minimization
process. More though is that they approach infinity. If this were not true, they
would be bounded and thusly the u; would be bounded. As a result, the wu;
would L2-converge strongly to an u with J wldr = 1.

/(u—ui)de — 0.

But
/(u —wu;)?dx = lilgn/(u;€ —u;)?dr =2

when ¢ # k. This is a contradiction.

Also, these eigenpairs are complete, in that if (u, A) is an eigen pair, then
u = u;, A = A; for some ¢ and if A; = A; then ¢ = j. These facts follow from the
following argument. Suppose that (u, A) is an eigenpair. Then

/\/uui dz = a(u,u;) = )\i/uui dz,

(/\—/\i)/uuidx:()

for all 4, so that either u = 0 (the trivial case) or A = \; for some ¢ and u L u;
for j # i. Now suppose u ¢ V; for the previously given i. Then u € V; for some
j < and thus we must conclude that w minimizes F[u] over V; since we have
that

Aj < A

But this means that there are two nontrivial minimizers of the function F' over
the same space, which, by the following calculation, is a contradiction.

Suppose uy,us are L? unit vectors both satisfing Flu1] = Flug] < F[v] for
any v € V. Then “1;“2 and “5*2 € V,, and so

[ ot aud do < [ Bt )+ G 4w

[ ot +auddo < [ B~ w4 Swn - w2 d
Adding the two inequalities together, we find that

ot + @)+ atd + o < [ B(h)? + ) + S + ) da

[ B+ )+ Lk + ) de <0,

This is a contradiction since we assume that eigenvalues are nontrivial.



Eigenvectors Span H}([a, b))

Not only does the Sturm-Liouville operator have an infinite spectrum of eigenval-
ues but the eigenvectors actually form a basis for H{([a,b]). For v € H}([a,b]),
define

n

Uy = Z(U,Ui)mui-

i=1
We first show that v,, form a Cauchy sequence in H}([a,b]). Notice that

n

0 <a(v—2vn,v—1v,) =a(v,v) — Z)\icf
i=1

n

Z et < a(v,v)

i=1
for all n. Thus the sum converges, making the tail sum approach zero. It follows
from

Cllv, — Um”Hg([a,b]) < a(Vy, — Vi, U — V) = Z Nic?

that the v,, are a Cauchy sequence in H}([a, b]). Now, it is not certain whether
vy, actually converge to v or not, infact, all we know is that v,, converge to some
w in HE([a,b]), but we will show that the v, converge to v in L?, which gives
the desired result. Notice, we used the coercivity of the form a, and know we
use the fact (u;, A;) are a minimizing pair in V;.

Notice that [(v —vy)u;dz =0 for i =1,...,n so that v — v, € V,,41. Thus,
if we pick n large enough so that A,, > 0 we have

1 1
/(v —vn)z dx < o (v —Vp, v — V) < )\—a(v,v).

n

Since, A, — 00, the inequality shows that v,, — v in L2.

Eigenvalues are simple

Suppose we have two linearly independent eigenvectors u; and us corresponding
to some eigenvalue A. Then, find real numbers ¢; and c¢o not both zero so that

c1uy(a) + cauy(a) = 0.

Define u(t) = c¢yuq (t) + caua(t). Then, u(t) is a nontrivial solution to SLEP and
(A, u) is an eigenpair due to linearity. From our boundary conditions, we see

u(a) = cruy(a) + couz(a) =0
and by choice of ¢y, co, we have

v (a) = cruy(a) + caub(a) = 0.



Since 2nd order linear initial value problems have unique solutions, v = 0. This
contradicts the linear independence of u; and us. Hence, the eigenvalues are
simple.

Obtaining simple eigenvalues depends on the Dirichlet Boundary conditions.
This next example illustrates how periodic boundary conditions can yield eigen-
values that are not simple. The following example can be found in [2].

Example 2. Consider the following SLEP
u’ = —)\u, (4)

w(—m) = u(m), (-m) = (). (5)
We let X = p? where u > 0. A general solution of (4) in this case is
u(f) = c1 cos(ub) + cosin(pb), 0 € [—m, .
The first boundary condition gives us
c1 cos(pum) — cosin(um) = ¢q cos(um) + co sin(um),
which is equivalent to the equation
cosin(um) = 0.

Hence the first boundary condition is satisfied if we take

W= Hn =N,
n=1,2,3,---. It is then easy to check that the second boundary condition is
also satisfied. Hence
Ap = n?
n=1,2,3,--- are eigenvalues and corresponding to each of these eigenvalues

are two linearly independent eigenfunctions given by u,(0) = cos(nf), v,(0) =
sin(nf), 6 € [—m, 7.
Final comment

The main reason we are interested in eigenpairs for the Sturm-Liouville operator
is we can use them to solve equations of the form

Lu=f, where f¢ H}([a,b]).

We first solve the SLEP
Lu=M\u

and then write f = > c¢;u;, which we can do since the eigenvectors span
H{([a,b]). Then, define

U= Z%ul for A; #0.

Then, u is a solution to
Lu=f.
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