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Abstract

As part of a 2002 VIGRE mini-course at University of Utah, we present
properties of eigenvalues and eigenfunctions for the second-order Sturm-
Liouville boundary value problem. Most of our proofs are adapted from
[1] and are given using variational methods. Examples are also discussed.

Introduction

We define the Sturm-Liouville operator L on a bounded interval [a, b] via

Lu := −(pu′)′+ qu,

where p ∈ C1([a, b]), q ∈ C([a, b]), p ≥ ν > 0, ν ∈ R, and q ≥ 0.
We are interested in the Sturm-Liouville Eigenvalue Problem (SLEP) with
Dirichlet boundary conditions:

Lu = λu, λ ∈ R (1)

u(a) = u(b) = 0 (2)

Definition 1. Values of λ for which (1),(2) has a nontrivial solution are called
eigenvalues and a nontrivial solution u corresponding to λ is called an eigen-
function. The pair (λ, u) is called an eigenpair for the SLEP (1), (2).

First, we present an example of how a PDE can lead to a SLEP. This example
can be found in [2].
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Example 1. In this example we use separation of variables to show how we can
get solutions of the two dimensional Laplace’s equation

uxx + uyy = 0.

We look for solutions of the form

u(x, y) = X(x)Y (y).

¿From Laplace’s equation we get

X ′′Y + XY ′′ = 0.

Separating variables and assuming X(x) 6= 0, Y (y) 6= 0 we get

X ′′

−X
=

Y ′′

Y
.

Since the left hand side of this equation depends only on x and the right hand
side depends only on y we get that

X ′′(x)
−X(x)

=
Y ′′(y)
Y (y)

= λ,

where λ is a constant. This leads to the Sturm-Liouville differential equations

X ′′ = −λX, Y ′′ = λY. (3)

It follows that if X is a solution of the first differential equation in (3) and Y
is a solution of the second equation in (3), then

u(x, y) = X(x)Y (y)

is a solution of Laplace’s partial differential equation.

Existence of minimizers

Using standard variational methods of Lagrange multiplier type, we look for
minimizers of the functional

F [u] =
∫ b

a

p(u′)2 + qu2 dx,

whose corresponding Euler-Lagrange equation is given by the Sturm-Liouville
equation, over

A = {u ∈ H1
0 ([a, b]) :

∫ b

a

u2 dx = 1}

so that a minimizer will yield the equation

”F ′[u] = λu”,
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∫ b

a

pu′φ′ + quφ dx = λ

∫ b

a

uφ

for all φ in H1
0 ([a, b]). The minimization will yield some suprising and useful

results about the eigenvectors of the operator.
For our purposes we consider the minimization problem in a closed subspace

V of H1
0 ([a, b]). First, to guarantee a minimum, we need F [u] to be bounded

below and thus require the assumption that p(x) ≥ θ > 0 and q(x) > 0. Then
F [u] has an infimum over A, which we call α, and a minimizing sequence uk. To
use our compactness results we would like the uk to be bounded in H1

0 ([a, b]),
but this follows from the Poincire inequality and coercivity of the functional F ,
which we see in the chain of inequalities

M ≥ F [uk] =
∫ b

a

p(u′k)2 + qu2
k dx ≥ θ||u′k||L2 + 0 ≥ C||uk||H1

0 ([a,b]).

As H1
0 ([a, b]) is a Hilbert space (i.e. a reflexive Banach space)

uk −→H1
0 ([a,b]) u

weakly for some u ∈ H1
0 ([a, b]). This u is our candidate for the minimizer of

F [u]. All is left to show is that F [u] ≤ lim inf F [uk] and u ∈ A, i.e. ||u||L2 = 1.
These two conditions guarantee that u is indeed a minimizer in V .

WLSC

To develope this inequality, we introduce the (notation saving) symmetric,
H1

0 ([a, b]) coervive, continuous, bilinear form

a(u, v) =
∫ b

a

pu′v′ + quv dx

associated to F .
F [uk] ≥ 2a(u, uk)− a(u, u).

And so, in the limit,

α ≥ 2a(u, u)− a(u, u) = F [u].

u is contained in V and A

Since the uk are bounded in H1
0 ([a, b]), which is compactly embedded in L2, we

know of the existence of a v ∈ L2 to which the uk converge strongly in L2. We
don’t yet, however, know that u and v are the same element. But for arbitrary
w ∈ L2, we have

(u− v, w)(L2) ≤ |(u,w)− (uk, w)|+ |(v − uk, w)|,
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where the left term can be made arbitrarily small since weak convergence in
H1

0 ([a, b]) implies weak convergnce in L2 and the second term can be made
arbitrarily by the Cauchy inequality and strong convergence in L2. Since L2

is a Hilbert space, and now (v − u,w) = 0 for any w ∈ L2, we must conclude
that u = v. But this proves that u ∈ A, because uk −→L2 v implies that
||v = u||L2 = 1.

V is a closed subspace for which we may apply Mazur’s theorem which asserts
that closed, convex sets are weakly closed. It follows that u ∈ V as well.

Conclusion

Combining the above two results we find that by WLSC

F [u] ≤ limF [uk] = α

and because u is contained in A and V ,

α = inf
v∈A,V

F [v] ≤ F [u].

We conclude that F [u] = α and that u the minimizes F over A and V . subsec-
tion*Eigenpairs As discussed, the inductive minimizing of the functional F over
the subspaces Vi produces a chain of functions and their corresponding values
under F ,

u1, u2, ..., ui, ... λ1 ≤ λ2 ≤ ... ≤ λi = F [ui] ≤ ...

We will show that these ui and λi are actually eigenpairs for the Sturm-Liouville
operator. To avoid later confusion, we note that the homogeneity of the func-
tional F allows us consider the following two problems as equivalent;

min
v∈A,Vi

F [v] = λi ⇐⇒ min
v∈Vi

F [v]
||v||L2

= λi.

Thus, we will frequently see the inequality

F [ui] ≤ λi

∫
v2 dx, v ∈ Vi,

without having to assume that ||v||L2 = 1.

Obtaining Eigenpairs

To obtain our eigenpairs, we inductively define a sequence of closed subspaces
of H1

0 ([a, b]).
Define

A := {u ∈ H1
0 ([a, b]) : ‖u‖L2 = 1}.

Let
V1 := H1

0 ([a, b]) and W1 := V1 ∩A.
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Minimizing F on W1, we get u1 ∈ W1 and

λ1 = inf {F (u) : u ∈ W1} = F (u1).

Next, let
V2 :=< u1 >⊥ and W2 := V2 ∩A.

Minimizing F on W2, we get u2 ∈ W2 and

λ2 = inf {F (u) : u ∈ W2} = F (u2).

Continue this process with

Vn :=< u1 >⊥ ∩ < u2 >⊥ ∩ . . .∩ < un−1 >⊥ and Wn := Vn ∩A.

Minimize F on Wn to get the pair (λn, un).

Notice that
W1 ⊃ W2 ⊃ W3 ⊃ . . . ⊃ Wn ⊃ Wn+1 ⊃ . . . ,

and hence,
λ1 ≤ λ2 ≤ . . . ≤ λn ≤ λn+1 ≤ . . .

Also, by construction, we get
∫ b

a

unuk dx = δn,k where δn,k :=
{

1 if n = k
0 if n 6= k

Proof of eigenpairhood

If φ ∈ Vi and ε 6= 0, then ui + εφ ∈ Vi and by definition of a minimizer,

a(ui + εφ, ui + εφ) ≥ λi

∫
(ui + εφ) dx.

2ε[a(ui, φ)− λi

∫
uiφ dx] + ε2[a(φ, φ)− λi

∫
φ2 dx] ≥ 0.

The second term is positive by definition of the minimum, and by taking ε
negative and small enough, so that the first term dominates the second, we
must conclude

a(ui, φ)− λi

∫
uiφ dx = 0.

Now, more generally, for arbitrary ψ ∈ H1
0 ([a, b]), ψ differs from a φ in Vi by a

linear combination of uk for k = 1, ..., i− 1. But since

a(ui, uk) =
∫

uiuk dx = δk
i ,

the before last equality holds for ψ in place of φ. This is exactly the weak
formulation that (ui, λi) form an eigenpair for the Sturm-Liouville operator.
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Properties of the eigenpairs

Most obvious is that the eigenvalues are ordered as a result of the minimization
process. More though is that they approach infinity. If this were not true, they
would be bounded and thusly the ui would be bounded. As a result, the ui

would L2-converge strongly to an u with
∫

u2 dx = 1.
∫

(u− ui)2 dx −→ 0.

But ∫
(u− ui)2 dx = lim

k

∫
(uk − ui)2 dx = 2

when i 6= k. This is a contradiction.
Also, these eigenpairs are complete, in that if (u, λ) is an eigen pair, then

u = ui, λ = λi for some i and if λi = λj then i = j. These facts follow from the
following argument. Suppose that (u, λ) is an eigenpair. Then

λ

∫
uui dx = a(u, ui) = λi

∫
uui dx,

(λ− λi)
∫

uui dx = 0

for all i, so that either u = 0 (the trivial case) or λ = λi for some i and u ⊥ uj

for j 6= i. Now suppose u /∈ Vi for the previously given i. Then u ∈ Vj for some
j < i and thus we must conclude that u minimizes F [u] over Vj since we have
that

λj ≤ λi.

But this means that there are two nontrivial minimizers of the function F over
the same space, which, by the following calculation, is a contradiction.

Suppose u1, u2 are L2 unit vectors both satisfing F [u1] = F [u2] ≤ F [v] for
any v ∈ V . Then u1+u2

2 and u1−u2
2 ∈ V2, and so

F [u1] ≤ F [
u1 + u2

2
] F [u2] ≤ F [

u1 − u2

2
],

∫
p(u′1)

2 + qu2
1 dx ≤

∫
p

4
(u′1 + u′2)

2 +
q

4
(u1 + u2)2 dx,

∫
p(u′2)

2 + qu2
2 dx ≤

∫
p

4
(u′1 − u′2)

2 +
q

4
(u1 − u2)2 dx.

Adding the two inequalities together, we find that
∫

p((u′1)
2 + (u′2)

2) + q(u2
1 + u2

2) dx ≤
∫

p

2
((u′1)

2 + (u′2)
2) +

q

2
(u2

1 + u2
2) dx,

∫
p

2
((u′1)

2 + (u′2)
2) +

q

2
(u2

1 + u2
2) dx ≤ 0.

This is a contradiction since we assume that eigenvalues are nontrivial.
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Eigenvectors Span H1
0([a,b])

Not only does the Sturm-Liouville operator have an infinite spectrum of eigenval-
ues but the eigenvectors actually form a basis for H1

0 ([a, b]). For v ∈ H1
0 ([a, b]),

define

vn =
n∑

i=1

(v, ui)L2ui.

We first show that vn form a Cauchy sequence in H1
0 ([a, b]). Notice that

0 ≤ a(v − vn, v − vn) = a(v, v)−
n∑

i=1

λic
2
i

n∑

i=1

λic
2
i ≤ a(v, v)

for all n. Thus the sum converges, making the tail sum approach zero. It follows
from

C||vn − vm||H1
0 ([a,b]) ≤ a(vn − vm, vn − vm) =

n∑

i=m

λic
2
i

that the vn are a Cauchy sequence in H1
0 ([a, b]). Now, it is not certain whether

vn actually converge to v or not, infact, all we know is that vn converge to some
w in H1

0 ([a, b]), but we will show that the vn converge to v in L2, which gives
the desired result. Notice, we used the coercivity of the form a, and know we
use the fact (ui, λi) are a minimizing pair in Vi.

Notice that
∫

(v − vn)ui dx = 0 for i = 1, ..., n so that v − vn ∈ Vn+1. Thus,
if we pick n large enough so that λn > 0 we have

∫
(v − vn)2 dx ≤ 1

λn
a(v − vn, v − vn) ≤ 1

λn
a(v, v).

Since, λn −→∞, the inequality shows that vn −→ v in L2.

Eigenvalues are simple

Suppose we have two linearly independent eigenvectors u1 and u2 corresponding
to some eigenvalue λ. Then, find real numbers c1 and c2 not both zero so that

c1u
′
1(a) + c2u

′
2(a) = 0.

Define u(t) = c1u1(t)+ c2u2(t). Then, u(t) is a nontrivial solution to SLEP and
(λ, u) is an eigenpair due to linearity. From our boundary conditions, we see

u(a) = c1u1(a) + c2u2(a) = 0

and by choice of c1, c2, we have

u′(a) = c1u
′
1(a) + c2u

′
2(a) = 0.
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Since 2nd order linear initial value problems have unique solutions, u ≡ 0. This
contradicts the linear independence of u1 and u2. Hence, the eigenvalues are
simple.

Obtaining simple eigenvalues depends on the Dirichlet Boundary conditions.
This next example illustrates how periodic boundary conditions can yield eigen-
values that are not simple. The following example can be found in [2].

Example 2. Consider the following SLEP

u′′ = −λu, (4)

u(−π) = u(π), u′(−π) = u′(π). (5)

We let λ = µ2 where µ > 0. A general solution of (4) in this case is

u(θ) = c1 cos(µθ) + c2 sin(µθ), θ ∈ [−π, π].

The first boundary condition gives us

c1 cos(µπ)− c2 sin(µπ) = c1 cos(µπ) + c2 sin(µπ),

which is equivalent to the equation

c2 sin(µπ) = 0.

Hence the first boundary condition is satisfied if we take

µ = µn := n,

n = 1, 2, 3, · · · . It is then easy to check that the second boundary condition is
also satisfied. Hence

λn = n2

n = 1, 2, 3, · · · are eigenvalues and corresponding to each of these eigenvalues
are two linearly independent eigenfunctions given by un(θ) = cos(nθ), vn(θ) =
sin(nθ), θ ∈ [−π, π].

Final comment

The main reason we are interested in eigenpairs for the Sturm-Liouville operator
is we can use them to solve equations of the form

Lu = f, where f ∈ H1
0 ([a, b]).

We first solve the SLEP
Lu = λu

and then write f =
∑

ciui, which we can do since the eigenvectors span
H1

0 ([a, b]). Then, define

u :=
∑ ci

λi
ui for λi 6= 0.

Then, u is a solution to
Lu = f.
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