CHOW GROUP
Let A be a Noetherian ring and X = Spec(A).

Notation Definition

Zi(X) or Z;(A) | The group of cycles of A of dimension i
For each non-negative integer 7 this is the free Abelian group
with basis consisting of all primes p such that dim(A/p) =1

[A/p] generator of Z;(A) corresponding to p, if dim(A/p) =i

Z.(X) or Z,(A) | The group of cycles of A
direct sum of Z;(A) over all 4

REMARK: Geometers index the other way (by codimension)

Example: Let A = k[z,y], where k is a field. Since dim A = 2, Z;(A) =0
except for possibly i = 0,1, 2.

e 7Zy(A) consists of the free Abelian group on the set of maximal ideals
of A.

e Z1(A) consists of the free Abelian group on the set of primes of height
one

e Z5(A) is free of rank one on the class [A] since (0) is the only height
zero prime of A

Definition: For an A-module M with dim M < i, let the cycle of dim i
associated to M be > 4/ length(M,)[A/p], where length(M,) is the

length of M, as an A,-module. Denote this sum by [M];.

(Recall, dim M = dim A/ann(M), and p € Supp(M) < ann(M) C p.)
REMARKS: Assume dim M <.

(1.) If p € Spec(A) with dim(A/p) = 4, then M, is an A,-module of
finite length (possibly zero) .

(2.) If M = A/p and dim(A/p) =i, then [A/p]; = [A/p].

(3.) If dim M < i, then [M]; = 0 (since no prime of dimension ¢ contains
annlM).



Definition: Let p be a prime such that dim(A/p) = ¢ + 1 and let x be an

element of A that is not in p. Then p ¢ Supp(x(a%))), SO dim(;a%))) <1

(since z is not in the unique minimal prime of the domain A/p, which is p.)

Denote the cycle [%] by div(p, z).

Definition: Rational equivalence is the equivalence relation on A generated
by setting div(p,z) = 0 for all primes p of dim 7 + 1 and all the elements
x ¢ p. (In other words, two cycles are rationally equivalent if their difference
lies in the subgroup generated by the cycles of the form div(p, z).)

Definition: The Chow group of A is the direct sum of the groups CH;(A),
where CH;(A) is the group of cycles Z;(A) modulo rational equivalence.

Denote the Chow group by CH,(A). (Also, sometimes the notations A;(A)
and A,(A) are used instead of the CH.)

Example: Set A = k[z,y|, where k is algebraically closed.

e Since k is algebraically closed, every maximal ideal m is generated by
two elements x — a and y — b, with a,b € k, by the Nullstellensatz. We have
div((z — a),y —b) = [555725] = [A/m], so we have CHy(A) = 0.

e Since A is a UFD, every height one prime is principal. Thus, every
generator [A/p] of Z1(A) is of the form [A/fA] = div((0), f); so CH;(A) = 0.

e Recall that Zy(A) = Z. Since there are no prime ideals of dim 3
(i.e., i + 1, where i = 2), there are no relations in dimension 2. Therefore,
CHy(A) 2 Z.

Thus, CH,(A) = Z.

REMARK 1: Any ring has non-zero Chow group because [A] # 0 since
there are no relations in dimension d + 1, where d= dim A.

REMARK 2: In general, the Chow group is very difficult to compute!

REMARK 3: To check that an element of the Chow group is zero is often
do-able, but to show that an element is non-zero is more difficult. The fact
that the divisor class group is isomorphic to the d — 1****' component of the
Chow group allows us to obtain non-trivial examples of Chow groups.
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Chow Group Problem: If A is a regular local ring, then CH;(A) = 0 for i # d,
and CHy(A) = Z (where the generator is [A]).

Interlude on Divisor Class Groups

In fact, when A is an integrally closed domain of dimension d, CH,_;(A) can
be expressed in terms of the divisor class group. Recall that an integrally
closed (or normal) domain has the properties Sy and R;. In particular, for
any height 1 prime p of A, A, is a regular local ring of dimension 1. In other
words, A, is a discrete valuation ring. Consequently, any ideal of A, is
a power of the maximal ideal pA,. We use the notation v,(a) to denote this
power, where v, is the valuation on A,. Note that v,(a) = length of (A4/a),
as an Ay-module.

Let K be the quotient field of A.

Definition: A nonzero finitely-generated A-submodule of K is called a frac-
tional ideal.

Note that a nonzero ideal of A is just a special case of this; if a is a fractional
ideal of A, but not necessarily an ideal of A, then there exists a nonzero
element x € A such that za is an ideal of A. Therefore, one can think of
fractional ideals as being ideals of A.

Definition: A fractional ideal is called divisorial if Ass(K/a) consists only
of height 1 primes.

Definition: Let D(A) be the set of divisorial ideals and P(A) the set of
principal fractional ideals. (In fact, every principal fractional ideal is diviso-
rial.) Then the divisor class group of A, denoted Cl(A), is the quotient

D(A)/P(A).

REMARK: The best way to think of the divisor class group of a normal
domain A is that it is a measure of the extent to which A fails to be a Unique
Factorization Domain. Recall that a Noetherian integral domain A is a UFD

if and only if every height 1 prime ideal is principal. This result is the reason
that A is a UFD if and only if CI(A) = 0.

Discussion: Recall that Z,_;(A) denotes the free Abelian group ®dim(a /p)=d—1%Z;
in other words, we’re summing over the set of height one primes. Elements



of Z4_1(A) are formal sums Zdim(A/p):d_l ny - [A/p], where n, € Z and all
but finitely many of the n, are 0. There is a bijection ¢ : D(A) — Z,;_1(A)
via ¢(a) = Y vy(a)[A/p], where the sum runs over all primes of height one.

It turns out that ¢ is a bijection. Moreover, the image of the subgroup of
principal ideals under ¢ is exactly the subgroup generated by cycles of the
form div((0), z), which are exactly the cycles rationally equivalent to zero.
This can be seen by the following:

If £ € K, then qb(%(A)) = ¢(xA) — ¢p(yA). Also, ¢(xA) is the sum of
vy (rA)[A/p], and v,(rA) is the length of A,/xA, in A/p.

Therefore, we have shown that D(A)/P(A) = CH,_(A).

We can think of the Chow Group Problem as an attempt to generalize the
fact that if A is a regular local ring, then CI(A) = 0. It is true that for a
regular local ring (which is a UFD) that CHy_1(A) = 0, but what about the
components below d — 1 7 Are they 0 as well?

Note that if we find any divisorial ideal of A that is not principal, then we
have found a non-trivial element in CI(A), and hence in CH,(A).

Example Let A = k[[X,Y, Z]]/(XY — Z?). Then the ideal (z, z) is height 1
and prime, so divisorial. However, it’s not principal. Therefore, it defines
a nonzero element of the divisor class group. In fact, the class of (z,z)
generates Cl(A), and it can be shown that Cl(A) = Zo.

REMARKS: (1) This ring is a complete intersection, but not a regular
local ring, (2) (z,2)? = (22,2, 2%) = (22,22, 29) = &, (2,1, 2) = (1,9, 2) and

(x,y,z) is not a divisorial ideal, which is the reason that Cl(A) = Z

Example Let A = k[[X,Y, Z, W]]/(XY — ZW). Then again the ideal (z, 2)
is height 1, prime, and its class generates CI(A). In fact, Cl(A) = Z.

Some results on Divisor Class Groups of a Noetherian normal domains A and
B:

1. If an A-algebra B is flat as an A-module, then there is a map Cl(A) —
CI(B) (<p > [B/pB] = > 110-1(Ba/pBg) < Q>

2. Cl(A) — CI(A[X]) is an isomorphism. (Recall that Gauss’ showed that



Ais a UFD if and only if A[X].)

3. Let S be a multiplicatively closed subset of A. Then (i) CI(A) — Cl(Ag)
is a surjection, (ii) the kernel is generated by the classes of the prime ideals
which meet S.

REMARK: Some good references for information on divisor class groups
are (1) R. Fossum, The Divisor Class Group of a Krull Domain, and (2) N.
Bourbaki, Commutative Algebra, Ch VII.

PROPOSITION: Let M be a finitely-generated A-module of dimension less
than or equal to 1 + 1. Let x € A such that x is contained in no minimal
prime ideal of dimension i + 1 in the support of M. Then

[M/2xM]; — [,M]; = > 1,(M,) div(p, ),
{p|dim(A/p)=i+1}

where .M is the set of elements of M annihilated by x. In particular, if x is
no a zero diwisor on M, then [M/xM)]; is rationally equivalent to zero.

PROOF-sketch

First of all, since x is not in any minimal prime in the support of M of
dimension i + 1, both M/xM and ,M have dimension at most i. We want
to reduce to the case where M = A/q. To do this, we’ll show that both sides
of the above equation are additive on short exact sequences.

Let 0 - M — M — M"” — 0 be a short exact sequence of modules of
dimension at most ¢ + 1 such that x is contained in no minimal prime in
their support of dimension ¢ + 1. The RHS is clearly additive since length is
additive. On the other hand, we obtain the long exact sequence:

0—, M —, M —, M" — M'JxM — M/xM — M"/zM" — 0

This is just the Snake Lemma applied to:

0 M’ M M 0

0 M’ M M 0

If we localize at a prime of dimension i, then the sequence we obtain is still
exact. Again using the fact that length is additive, we see that the LHS is

b}



additive. Therefore, by a standard filtration argument, we can assume that
M= Alq.

e If the dimension of q is i+ 1, then = ¢ q and the definition of div(q, z) =

[—x(Af(/qq)]i = [M/xM]; gives the result.

o If dim M < 7+ 1, then there are no primes of dimension ¢ + 1 in
the support of M, so the RHS is 0. If x € q then (z annihilates M so)
M = M/xM = M, so LHS is 0. Finally, if = ¢ q, then the dimensions of
M/xzM and ,M are less then i, so LHS is again zero.

Definition: Let k be a nonnegative integer. We say that a map f: A — B is
flat of relative dimension k if f is a flat map of rings such that, for every
prime ideal p of A of dimension i, every minimal prime ideal of B/pB has
dimension ¢ + k.

PROPOSITION: If f : A — B is a flat map of relative dimension k, then
the map from Z;(A) to Z;1(B) that sends [A/p] to [B/pBliyk induces a map
on Chow groups from CH;(A) to CH;1y(B).

PROOF

Let p be a prime ideal of A of dimension 7 + 1 and let = be an element of A
that is not in p. We must show that the cycle div(p, z) is mapped to a cycle
that is rationally equivalent to zero in Z;,x(B). We have the short exact
sequence:

z Alp
0—-A/p—A/p— — 0
P AR )
: A
and div(p, z) = [x(A—//pp)]i’ Then
z B/pB
0— B/pB— B/pB—- ————+- —0
[PE BB B pB)
since B is flat over A. Since dimension B/pB < i+ 1 + k, by our lemma,
[%]Hk is rationally equivalent to zero (since x is regular on B/pB). To
iortnplete the proof we must show that [%]Hk is the image of [QE(AA—%],-.
e
Afp
=My C My CMyC---C M=
0 o C My C My C C My, LL’(A/]J)



be a filtration such that M;.,/M; = A/q, for prime ideals q; of A. Then
| ?f{fp)

we have a filtration of

|; is the sum of [A/ q J] over all q; of dimension i. Tensoring by B again,

B/pB with quotients of the form A/q; ® B, and the

associated cycle [A/q; ®B]Z+k is the image of [A/q,];. If q; has dimension less

than 4, then all components of A/q; ® B have dimension less than i+ k, since

f is flat of relative dimension k. Thus [%]H—k is the sum of [A/q; ® Bli+k

for q; of dimension %, so [%]

vk 1s the image of div(p, ) as desired.

REMARK: The map on Chow groups whose existence is proven above is
called a flat pull back by f and is denoted by f*.

This last proposition allows us to obtain some of the usual operations in
Commutative Algebra with respect to the Chow group. In particular, we
can obtain a map CH,(A) — CH,(Ag), where S is a multiplicatively closed
set. In addition, there is a map on Chow groups obtained by adjoining a
polynomial variable. These are the next two results.

PROPOSITION: Let S be a multiplicatively closed subset of A. For each
prime ideal pg of Ag, define the dimension of [As/ps] to be the dimension of
[A/p]. Let Z.(S,A) denote the subgroup of Z.(A) generated by those prime
ideals of A that meet S. Then the inclusion Z,(S,A) in Z,(A) induces an
exact sequence:

Z.(S, A) — CH,(A) — CH,(Ag) — 0

PROOF

Since the ideals of Ag are extended from prime ideals of A, the map on
the right is surjective. Moreover, the composition Z,(S,A) — CH,(A) —
CH.(Ag) is zero since every prime that meets S goes to zero in Z.(Ag)
and hence in CH,(Ag). Therefore, we’ll show exactness at CH.(A). Let
>-;nj[A/p;j] be a cycle in Z;(A) that goes to zero in CH;(As). Then there
exist prime ideals q; of Ag of dimension ¢ + 1 and elements z; of Ag not in

{qx} such that
Zn] [As/(p;)s Zdlv (qk, k)



in Z;(Ag). The prime ideals gy, are extended from prime ideals of A, which we
also denote q;. Furthermore, by multiplying by units in Ag, we may assume
that the x5 are in A. The difference

> mslAfps] =D div(ak, z)

is a cycle in Z;(A). Since its image as a cycle in Z,(Ag) is zero, all of
its components with non-zero coefficients must be prime ideals that do not
survive in Ag, which means that they are in Z.(S5, A). Thus > n;[A/p;] is
rationally equivalent to a cycle in Z,(S, A), and the above sequence is exact.

THEOREM: The map defined by flat pull-back of cycles from CH;(A) —
CH,+1(A[T)) is surjective for all i.
PROOF

NOTE: This map is in fact an isomorphism, but to define the inverse map
requires a lot more machinery.

If there exists a q € Spec(A[T]) such that [A[T]/q] is not in the image of the
Chow group of A (i.e., no p € Spec(A) exists such that [A/p] — [A[T]/q])
then we choose one such that its intersection with A is maximal among
all prime ideals of A[T] with this property. (This is possible since A is
Noetherian.) Let dim A/q = i+ 1 and p = qN A. Let ¢ = pA[T] and
consider the localization at the multiplicatively closed set S = A —p. The
ring (A[T]/q)s = (As/pAs)[T] = r(p)[T]. Thus, (A[T]/q')s is a PID, and
hence (q/q')s is a principal ideal. By clearing denominators, we may assume
that it is generated by an irreducible polynomial f(7T") with coefficients in
A. Consider the cycle [A[T]/q]— div(q’, f(T")). Since f(T') generates q/q" in
the localization of A[T|/q" at S = A — p, the only prime ideal with non-zero
coefficient in div(q’, f(T')) that contracts to p is q and that coefficient is 1.
Thus, every prime ideal with nonzero coefficient in [A[T]/q]— div(q’, f(T))
must contract to a prime ideal of A that properly contains p. By the maxi-
mality of p, these prime ideals are in the image of p, these ideals are in the
image of CH,(A), so [A[T]/q] is rationally equivalent to a cycle in the image
of CH,(A), and thus is in the image of CH,(A) as well.



