
The Calculus of Variations

April 23, 2007

The lectures focused on the Calculus of Variations. As part of optimization
theory, the Calculus of Variations originated in 1696 when Johann Bernoulli
posed the brachistochrone problem. This problem related to the curve between
two points along which a ball would require minimal time of travel to reach
the bottom. This problem was solved by many different mathematicians of the
time, some of which included Newton, l’Hôpital, and Bernoulli.

On February 9, 16, and 23, 2007, Professor Andrej Cherkaev, graduate stu-
dent Russ Richins, and Professor David Dobson presented the basic ideas and
some practical applications of the Calculus of Variations. Transcribing these
lectures were John Tate, Jianyu Wang and Yimin Chen.

Professor Andrej Cherkaev’s Lecture:

Introduction:

In its early days, the calculus of variations had a strong geometric flavor.
Later, new problems arose during the 19th century, and the calculus of vari-
ations became more prevalent and was used to solve problems such as finding
minimal surfaces.

The name ”calculus of variations” emerged in the 19th century. Originally
it came from representing a perturbed curve using a Taylor polynomial plus
some other term, and this additional term was called the variation. Thus, the
variation is analogous to a differential, in which the rate of change of a function
at a point can be used to estimate the function value at a nearby point. Now
mathematicians more commonly use minimizing sequences instead of variations,
but the name variation has remained.

Mathematical Techniques:

A simple problem to illustrate the spirit of the calculus of variations is as
follows: Given a function f , for x ∈ R, minimize f(x) over x with the following
conditions:

δf

δx
= 0,
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δ2f

δx2
≥ 0.

Thus we use the Second Derivative Test to find the relative minima of f(x), and
then we order the minima to find the absolute minimum of the function.

However, certain problems arise. For example, if f(x) is not differentiable,
then f ′(x) would be be discontinuous. In calculus of variations, the function
is usually assumed to be differentiable. Nonetheless, sometimes the derivative
might not exist or might go to infinity. Other complications might include the
nonexistence of a solution or a function with multiple minima of equal value,
such as f(x) = (x2−1)2. In this case, because the value of the function at x = 1
and x = −1 is the same, the function has no unique absolute minimum.

Two ways to approach these difficulties using the calculus of variations are
called regularization and relaxation.

Regularization:

Regularization at the most general level consists of adding something to
function to be minimized to make it more regular. For example, consider the
aforementioned function f(x) = |x|. An example of regularization would be to
set this equal to

lim
n→∞

fn(x),

where

fn(x) =

√

x2 +
1

n2
.

These functions have unique minima which converge to the minimum of f .
The regularization thus eliminated the problem of a discontinuous first deriva-

tive at x = 0.

One common type of problems in which regularization is used are viscosity
problems in which sometimes the derivative is not continuous, but the calculus
of variations used with regularization allows a solution to be found which is
almost optimal.

In summary, regularization corrects the weird behavior of a function, allow-
ing one to find a solution.

Relaxation:

Relaxation, at the most general level, includes adding extra conditions to a
problem to relax the constraints. For example, analytically an open set of dif-
ferentiable functions might be given, but we would like to use an optimal closed
set or perhaps even the closure of some open set. Another example of relaxation
might include functions for which boundary conditions include inequalities, and
relaxation would include modifying some of those inequalities.
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Let us illustrate the use of regularization and relaxation by some example
problems.

A Problem Using Regularization: Minimize the integral F =
∫ 1

−1 x2u′2dx
over the set of functions u satisfying the boundary conditions u(−1) = −1 and
u(1) = 1.

Here we will apply one of the basic tools of the Calculus of Variations, the
Euler-Lagrange Equation. This equation is as follows: Given that there exists a
twice-differentiable function u = u(x) satisfying the conditions u(x1) = u1 and
u(x2) = u2 which minimizes an integral of the form

I =

∫ x2

x1

f(x, u, u′)dx,

what is the differential equation for u(x)?
Stated in terms of our problem, x1 = −1 and x2 = 1, and f(x, u, u′) = x2u′2.

We will now use the Euler-Lagrange differential equation, which is

δf

δu
− d

dx

(

δf

δu′

)

= 0.

After computing the derivatives, we find that

d

dx
(2x2u′) = 0,

which means 2x2u′ = c, some constant. Thus u′ = c
2x2 , and u = −C

2x + D for
constants C and D. But then u is discontinuous for x = 0, and so substituting
x2 + ǫ2 for x2 we consider the regularized problem

I2 = min
u

∫

(x2 + ǫ2)u′2dx.

Then
u′ =

c

2(x2 + ǫ2)
,

and u′ = c
x2+ǫ2 . Then we find that

u = c × arctan(
x

ǫ
).

Addressing the boundary conditions that u(−1) = −1 and u(1) = 1, as ǫ tends
to zero, we find that the constant is 1

arctan( x

ǫ
) . For x > 0,

lim
ǫ→0

1

arctan(x
ǫ )

=
π

2
,

and for x < 0,

lim
ǫ→0

1

arctan(x
ǫ )

=
−π

2
.
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Thus we have determined that our function u is π
2 arctan

(

x
ǫ

)

for x > 0 and

−π
2 arctan

(

x
ǫ

)

for x < 0.

A Problem Using Relaxation: Minimize over u
∫ 1

0
((u′2 − 1)2 + u2)dx

subject to the boundary condition u(0) = u(1) = 1.
The minimum corresponds to u = 0 and u = ±1. We can relax this problem

by considering û : |û′| = 1. The solution thus could be a function that oscillates
infinitely often, with the derivative’s graph like a square wave with amplitude
1.

Applications of Calculus of Variations:

Since its inception, the calculus of variations has been applied to a variety
of problems. In engineering, it has been used for optimal design. Previously,
much engineering was done through trial and error. For example, many cathe-
drals toppled during their construction, and parts of them had to be repeatedly
rebuilt before stability was achieved. In fact, until the late 17th century, much
of engineering design was a matter of building structures, modifying them in
the case of failure rather than knowing beforehand whether or not they were
adequately strong. In mechanics, the calculus of variations allows one to find
the stability of a system mathematically without actually building it. One such
modern use is a number of Java-based bridge modeling applications which are
available online. In physics and materials science, the calculus of variations has
been applied to the study of composite materials. Finally, a new use of this
subject has been in evolutionary biology, in which the calculus of variations is
used to explore optimization in nature.

In all of these fields, the application of the calculus of variations is often de-
sign when the goal is not known, such as the design of a bridge when the exact
loads and locations of those loads at any given time are not known. Mathemat-
ically, the calculus of variations relates to bifurcation problems and problems
such as the maximization of a minimal eigenvalue.

Graduate Study in the Calculus of Variations at Utah:

In the Spring 2007 semester, a 5000-level class on the Calculus of Variations
is being taught. Beginning in the Fall 2007 semester, a 6000-level class on the
topic will become regular. Nonetheless, other classes cover material concerned
with the calculus of variations. Some of those classes include a topics class on
Optimization Methods, Partial Differential Equations, and Applied Mathemat-
ics (depending on the instructor).

Concluding Quote

”The calculus of variations is so much in the heart of differential equations
and analysis that you cannot get away from it.”
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Graduate Student Russ Richins’ lecture:

Given a domain Ω in R
2, and u : Ω −→ R, a continuous function, then the

surface area of the graph of u is given by

∫

Ω

√

1 + |∇u|2dx.

One of the basic problems in the Calculus of Variations is the so-called
minimizing surface area problem, that is to solve the minimization problem

inf
u∈A

∫

Ω

√

1 + |∇u|2dx, A = {u ∈ C1(Ω) : u|∂Ω = g},

where g is a function defined on the boundary of Ω.
A more general problem is to find

inf
u∈A

∫

Ω

f(x, u,∇u)dx,

where f is a continuous function, and A is a given set of functions.
Now look at variational problems in a more abstract setting. Given an

admissible set of functions A, find u that solves the problem

I(u) = inf
v∈A

I(v),

where I : A −→ R is a given continuous functional.
So we are looking for

inf
v∈A

I(v).

Since we are seeking an infimum, it must be that there exists a sequence
{vk} ⊂ A such that

lim
k→∞

I(vk) = inf
v∈A

I(v).

Such a sequence {vk} is called a minimizing sequence.

In Calculus classes, we learn to solve similar optimization problems, where
A is a closed interval and I is a continuous function. The requirement of com-
pactness and continuity are sufficient to guarantee that the solution exists in
this case. In the general framework, compactness and continuity will again be
essential. The following theorem states conditions for the existence of solutions
to the main problem in the Calculus of Variations.
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Theorem 1 Let Ω ⊂ R
n be a bounded, open set with Lipschitz boundary. Let

f ∈ C(Ω × R × R
n) satisfy:

(a) The map ξ 7→ f(x, u, ξ) is convex for every (x, u) ∈ Ω × R.
(b) There exists p > q ≥ 1 and α1 > 0, α2, α3 ∈ R, such that

f(x, u, ξ) ≥ α1|ξ|p + α2|u|q + α3,

∀(x, u, ξ) ∈ Ω × R × R
n.

Then if u0 ∈ W 1,p(Ω) with I(u0) < ∞, there exists u ∈ u0 + W 1,p
0 (Ω) =: A,

such that

I(u) = inf
v∈A

I(v) = inf
v∈A

∫

Ω

f(x, v(x),∇v(x))dx.

Furthermore, if (u, ξ) 7→ f(x, u, ξ) is strictly convex for every x ∈ Ω, then
the minimizer is unique.

In order to be clear, the space W 1,p(Ω) is a subset of Lp(Ω) whose elements
are functions which are differentiable in a certain sense. We say that
v ∈ Lp(Ω) has a weak first partial derivative with respect to xi, if there exists
a function g ∈ Lp(Ω) such that

∫

Ω

v
∂ϕ

∂xi
dx = −

∫

Ω

gϕdx, ∀ϕ ∈ C∞
0 (Ω).

The space W 1,p(Ω) consists of all functions in Lp(Ω) with weak first partial
derivatives in all directions and is a Banach Space, when endowed with the
norm

‖ v ‖W 1,p(Ω) = {‖ v ‖p
Lp(Ω) + ‖ ∇v ‖p

Lp(Ω)}1/p.

The following two examples illustrate why the conditions in the above theorem
are optimal.

Example 1 : Consider the function f(u, ξ) =
√

u2 + ξ2, find the minimizer,
if it exists.

Solution: In this case, condition (b) in the theorem holds only with p = 1.We
define

A = {v ∈ W 1,1(0, 1) : v(0) = 0, v(1) = 1}, m = inf
v∈A

I(v),

then

I(u) ≥
∫ 1

0

| u′(x) | dx ≥
∫ 1

0

u′(x)dx = u(1) − u(0) = 1, ∀u ∈ A.

Therefore m ≥ 1.
We now construct a minimizing sequence vk as follows: For k = 1, 2, 3, · · · ,

vk is given by

vk(x) =

{

0 if x ∈ [0, 1 − 1/k]
1 + k(x − 1) if x ∈ (1 − 1/k, 1]

,
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then I(vk) =
∫ 1

1−1/k

√

(1 + k(x − 1))2 + k2dx ≤ 1
k

√
1 + k2 → 1, as k → ∞.

Therefore m = 1.
Assume that there exists a minimizer u ∈ A, then

1 = I(u) =

∫ 1

0

√

u2 + u′2dx ≥
∫ 1

0

| u′ | dx ≥
∫ 1

0

u′dx = u(1) − u(0) = 1.

This implies that all equalities hold in the line above, and therefore u = 0
almost everywhere in (0, 1), which in turn implies that u′ = 0 almost
everywhere in (0, 1). The minimizer could only be the zero function, but it
does not satisfy the boundary conditions. Therefore, there can be no
minimizer for this problem.

Example 2 : Let f(u, ξ) = (ξ2 − 1)2 + u4, A = {v ∈ W 1,4
0 (0, 1)},

m = infv∈A I(v). Show m = 0.

Solution: Again, we construct a minimizing sequence vk. For each integer ν
with 0 ≤ ν ≤ k − 1, where k ≥ 2, let {vk} be defined on [ν

k , ν+1
k ] as follows:

vk(x) =

{

x − ν
k if x ∈ [ν

k , 2ν+1
2k ]

−x + ν+1
k if x ∈ (2ν+1

2k , ν+1
k ]

.
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Then | v′k |= 1 almost everywhere, and | vk |≤ 1
2k , so 0 ≤ I(vk) ≤ 1

(2k)4 → 0,

as k → ∞. Therefore m = 0. But if u ∈ W 1,4
0 (0, 1) is a minimizer, then

I(u) = 0, and u = 0, | u′ |= 1 almost everywhere in (0, 1). It ends up that the
elements of W 1,4

0 (0, 1) are continuous, so this is impossible.

This example explains again that the minimizer does not always exist. The
reason for this is that f is not convex. In the first example, when p = 1,
W 1,p(Ω) is not reflexive.

One of the very important properties needed to hold for functionals to have
a minimizer is ”Weak Lower Semi Continuity”, which is defined by: If {Vk}
converges weakly to v, then

I(v) ≤ lim inf
k→∞

I(Vk).
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Professor David Dobson’s lecture:

Introduction:

Given a symmetric, positive definite matrix A ∈ R
n×n,

A(x) = (aij(x)), x ∈ R, aij(x) ∈ C∞,

assume A(x) has eigenvalues 0 ≤ λ1(x) ≤ λ2(x) ≤ · · · ≤ λn(x). We want to
find Supx∈[0,1]λ1(x).

A possible way to do this is using the freshman approach: compute λ′
1(x)

explicitly, and find x0 which satisfies λ′
1(x0) = 0. Therefore the solution will

be at x = 0, x = x0 ∈ (0, 1) or x = 1. But the problem is that sometimes λ′
1(x)

does not exist.
For example, if

A(x) =

(

1 + x2 0
0 1 + (x − 1)2

)

,

then λ1 is 1 + x2 when x ∈ [0, 1
2 ] and is 1 + (x − 1)2 when x ∈ [12 , 1]. It fails

to be differentiable at x = 1
2 . So sometimes we cannot ignore the situations

when the eigenvalue functions are not differentiable.

Buckling Load problem:

Another interesting example is to find the shape of the strongest column.
Lagrange posed the problem: which curve determines the column of unit
length and unit volume with maximum resistance to buckling under exact
compression.

Keller’s solution:

In 1960, Keller used the Euler buckling load

λ1 = inf
u∈V

∫ 1

0 EI|u|′′2dx
∫ 1

0
|u|′′2dx

,

here, u(x) is the displacement of the column, E is Young’s modulus, I(x) is
given by CA2(x), and A(x) is the cross sectional area and V ⊂ H

2(0, 1), which
incorporates the boundary conditions, u(0) = u′(0) = u(1) = u(1) = 0.

If λ is an eigenvalue of the matrix A with corresponding eigenvector u.

Then 〈u, Au〉= λ〈u, u〉. So λ= 〈u,Au〉
〈u,u〉 . This is exactly the Raleigh Quotient.

Then the smallest eigenvalue λ1 is the minimizer of the Raleigh Quotient. And
u is the solution of −(EIu′′)′′ = λ1u, subject to the boundary conditions
u(0) = u′(0) = u(1) = u′(1) = 0.

Keller’s solution gives cross sectional area A(x) = 0 at x = 1
4 , x = 3

4 .
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Cox’s solution:

In 1992, Cox Overton showed: (a) The above solution is not correct. (b) The
buckling load calculated by Keller is 16 times greater than the actual buckling
load.

So what went wrong? The answer is that Keller assumed λ1 is a simple
eigenvalue, while it is not. We can find the correct solution by numerical
methods using techniques of nonsmooth analysis by Clarke.

Conclusion:

For the eigenvalues’ optimization problems, we may not assume eigenvalues
are simple. There are some cases where we need to find other possible
methods to solve those problems.
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