If \(n = m^2 \) where \(m \) is an integer, we call \(n \) a perfect square. For example 9 is a perfect square since \(9 = 3^2 \).

Primary Question: If \(n \) is a positive integer such that \(2n + 1 \) is a perfect square, show that \(n + 1 \) is the sum of two successive perfect squares.

Tie Breaker: If \(n \) is a positive integer such that \(3n + 1 \) is a perfect square, show that \(n + 1 \) is the sum of three perfect squares.

A correct solution to the primary problem is a fully correct solution. The tie breaker will only be used in deciding the overall winner.