This problem has three parts. A correct answer to part (a) will be considered to be a partially correct solution; correct answers to parts (a) and (b) will be considered to be a fully correct solution. Part (c) will only be used as a tiebreaker in determining the problem winner.

(a) Fifty people are playing a game in which they sit in a circle, numbered in order from person #1 to person #50. The person who is directing the game starts with person #1 and counts, “1, 2, 1, 2, 1, 2, ...”; each person who receives a “2” loses and exits the circle immediately. For example, at the start, people #2, 4, 6 will exit the circle. The counting continues until there is only one person left. This person wins. What is his number?

(b) Suppose there are n people playing the game, numbered in order from person #1 to person #n. How can you determine the number of the person who wins? (This will be a very simple algorithm involving n.)

(c) If there are n people playing the game and the person directing the game counts, “1, 2, ..., p, 1, 2, ..., p, ...”, and every pth person is removed, how can you determine the number of the person who wins? Provide a recursive method involving n and p that would allow you to determine who wins when n people play if you know who wins when $n - 1$ people play.

In the spirit of the UPSC, you should not search the internet or look the solution up in a book.